❶ ct图像区域生长是三维还是二维
方法倒是有两种。
一种是利用专业的交互式的医学影像控制软件。有一个软件,叫做MIMICS。
人民军医出版社出过一本名叫《Mimics软件临床应用.计算机辅助外科入门技术》的书,里面比较详细介绍了这个软件。 由于本人不是学医的,所以这方面所知有限。楼主可以买本书看看,此书在网上能买到。网上也能搜索到一些软件教程。
另外一种方法,就是用一般常见的,如MAYA,CINEMA 4D,3DMAX等三维动画软件,进行建模。只是这种方法用来建模可以,但进行医学研究,可能就有不足之处了。
❷ 区域生长的区域生长
它是一个迭代的过程,这里每个种子像素点都迭代生长,直到处理过每个像素,因此形成了不同的区域,这些区域它们的边界通过闭合的多边形定义。
在区域生长中的主要问题如下:
(1)表示区域的初始化种子的选择:在区域生长过程中,这些不同区域点合适属性的选择。
(2)基于图像具体属性的像素生长不一定是好的分割。在区域生长过程中,不应该使用连通性或邻接信息。
(3)相似性:相似性表示在灰度级中观察在两个空间邻接像素之间或像素集合的平均灰度级间的最小差分,它们将产生不同的区域。如果这个差分比相似度阈值小,则像素属于相同的区域。
(4)区域面积:最小面积阈值与像素中的最小区域大小有关。在分割的图像中,没有区域比这个阈值小,它由用户定义。
区域生长的后处理(region growing post-processing):由于非优化参数的设置,区域生长经常会导致欠生长或过生长。人们已经开发了各种各样的后处理。从区域生长和基于边缘的分割中,后处理能获得联合分割的信息。更加简单的后处理是根据一般启发法,并且根据最初应用的均匀性标准,减少分割图像中无法与任何邻接区域合并的最小区域的数量。
区域连接图
在场景中区域间的邻接关系可以由区域邻接图(region adjacency graph, RAG)表示。在场景中的区域由在RAG的节点集合表示 N = {N1, N2, ... , Nm},这里,节点Ni表示在场景中的区域Ri ,并且区域Ri的属性存储在节点的数据结构Ni中。在Ni和Nj之间的边缘Eij表示在区域Ri和Rj之间的连接。如果在区域Ri里存放一个像素与在区域Rj彼此相邻,那么两个区域Ri和Rj是相邻的。邻接可能是4连通或8连通的。邻接关系是自反(reflexive)和对称(symmetric)的,但不一定是可传递(transitive)的。下图显示具有6个截然不同区域的场景邻接图。
当它表示区域邻接图(RAG)是,二进制矩阵A成为邻接矩阵(adjacency matrix)。在RAG里,当节点Ni和Nj邻接,在A中,aij是1。因为邻接关系是自反的,矩阵的对角元素都是1。在上图的多区域场景邻接矩阵(关系)如下所示。
区域合并和分裂
由于在场景中分割单一大区域,分割算法可能产生许多个小区域。在这种情况下,较小的区域需要根据相似性合并,并且使较小的区域更紧密。简单的区域合并算法如下所述。
步骤1:使用阈值集合将图像分割为R1,R2,R,…,Rm。
步骤2:从图像的分割描述中生成区域邻接图(region adjacency graphics,RAG)。
步骤3:对于每个Rj,i = 1,2,…,m,从RAG中确定所有Rj,j≠i,如Ri和Rj邻接。
步骤4:对于所有i和j,计算在Ri和Rj之间合适的相似性度量Sij。
步骤5:如果Sij>T,那么合并Ri和Rj
步骤6:根据相似性标准,重复步骤3~步骤5,直到没有合并的区域为止。
合并的另一个策略是根据两个区域之间的边缘强度。在这个方法中,在邻接区域之间的合并是根据两个区域间沿标定边界长度的边缘强度。如果边缘强度小,即边缘点较弱(weak),如果合并没有大量改变平均像素强度值,那么可以合并两个区域。
还有这种情况:由于错误的预处理分割,产生了太小的区域。这归结于不同区域错误合并成一个区域。在这种情况下,在分割区域中灰度值的变化可能高于阈值(T),因此,需要将区域分裂成更小的区域,这样每个更小的区域都有均匀小方差。
分裂和合并可能结合在一起用于复杂场景的分割,基于规则可以指导分裂和合并运算的应用。
❸ 图像分割最好方法
1.基于阈值的分割方法
阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。
阈值法特别适用于目标和背景占据不同灰度级范围的图。图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。
2.基于区域的图像分割方法
基于区域的分割方法是以直接寻找区域为基础的分割技术,基于区域提取方法有两种基本形式:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是从全局出发,逐步切割至所需的分割区域。
分水岭算法
分水岭算法是一个非常好理解的算法,它根据分水岭的构成来考虑图像的分割,现实中我们可以想象成有山和湖的景象,那么一定是水绕山山围水的景象。
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
❹ 图象分割有哪三种不同的途径
图象分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。早期的图像分割方法可以分为两大类。一类是边界方法,这种方法假设图像分割结果的某个子区域在原来图像中一定会有边缘存在;一类是区域方法,这种方法假设图像分割结果的某个子区域一定会有相同的性质,而不同区域的像素则没有共同的性质。这两种方法都有优点和缺点,有的学者考虑把两者结合起来进行研究。现在,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。所使用的数学工具和分析手段也是不断的扩展,从时域信号到频域信号处理,小波变换等等。
图像分割主要包括4种技术:并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术。下面是分别对每一项做简单的介绍。
❺ 如何用区域生长法实现图像分割
区域生长法图像分割是直接根据像素的相似性和连通性来对图像进行聚类的算法。基本原理是,给出若干种子点,然后依次对这些种子点进行如下操作,直到种子点集合为空:判断种子点四邻域或八邻域的像素点是否和种子点相似(灰度相似或其他测度相似),如果相似则将该点加入种子点集合,否则不作处理。
该算法原理很简单,但在数据结构的组织上却需要技巧,本文介绍一种简易的数据组织方式实现该算法。
如上图所示,左图为一幅W*H大小的图像示意图,利用区域生长法图像分割算法,该图像被分割(聚类)为7块;右图为相应的数据结构,图像分割的结果属于图像空间数据,其实就是一系列的像素点坐标数组或与像素点坐标直接关联的属性数组如FLAG的数组等,这个数组的维度一定是W*H,而分割结果体现在数组元素的排列顺序:同一类别的元素连续存储。然而类别的界限无法用该数组表明,而只能用另外一个描述数组,这里我们称之为图像空间数据的“元数据”数据,这个数组的有效维度为空间数据的类别数,即7,每个元素代表的是空间数据数组中每个类别的元素个数,其实也就相应地表明了每个类别的指针位置。
❻ 区域生长的区域生长的优势和劣势
1. 区域生长通常能将具有相同特征的联通区域分割出来。
2. 区域生长能提供很好的边界信息和分割结果。
3. 区域生长的思想很简单,只需要若干种子点即可完成。
4. 在生长过程中的生长准则可以自由的指定。
5. 可以在同一时刻挑选多个准则。 1. 计算代价大。
2. 噪声和灰度不均一可能会导致空洞和过分割。
3. 对图像中的阴影效果往往不是很好。
对噪声问题,通常可以用一些平滑滤波器,或是diffusion滤波器做预处理来解决,所以通常噪声问题并不是很严重。所以实际上,区域生长的最严重的问题就是效率低下。
据实验,在2.4GHz的电脑上,一个512*512*343的数据,进行一次区域生长大约需要200s的时间