❶ 原子吸收光谱法
一、内容概述
原子吸收光谱法(AAS)又称为原子吸收分光光度法,基本原理是每种元素都有其特征的光谱线,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度表示,吸光度与被测样品中的待测元素含量成正比;即基态原子的浓度越大,吸收的光量越多,通过测定吸收的光量就可以求出样品中待测的金属及类金属物质的含量,对于大多数金属元素而言,共振线是该元素所有谱线中最灵敏的谱线,这就是该法之所以有较好的选择性,可以测定微量元素的根本原因。
原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到10 -9 g/mL数量级,石墨炉原子吸收法可测到10 -13 g/mL数量级。其氢化物发生器可对8种挥发性元素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
二、应用范围及应用实例
(一)石墨炉原子吸收法检测化探样品中Au的不确定度
2013年最新推出的Z-3000系列原子吸收光谱仪,它应用两个完全匹配的光电倍增管做检测器,分别接受光源中偏振面平行于磁场和垂直于磁场的偏振方向的辐射,测量原子吸收线的π成分及σ±成分,实现背景校正。这是一个理想的方案,可以保证在同一波长、同一测量空间、同一时间(实时)进行背景校正。
Z-3000 AAS的稳定性极好,因为普通原子吸收石墨炉上石墨管的电阻极小,需要使用低压大电流,通常要使石墨管升至3000℃需要400~600 A的电流。Z-3000 AAS 石墨炉使用的是高阻值石墨管,石墨的阻值在30~33 mΩ。使用高阻值石墨管就可以在小的加热电流下工作,要将石墨炉加热到3000℃温度时,在市电电源上所用的电流仅为15 A。由于加热电流值低,内置变压器与石墨炉连接使用了实心电缆,各接触点和电缆中的损耗极小。石墨炉体最大功率升温时,升温速率达到2600℃/s,提高灵敏度的同时给出极佳的检测稳定性和重现性,降低了基体干扰,极大地提高了石墨管的使用寿命,从80~400次/只增加到2000~4800次/只。
它具有语音自动导航、全信息分析软件、多媒体操作教程、视频维护保养程序,几乎无须任何使用说明书即可操作仪器。在地矿系统实验室有着广泛的用户基础和地球化探样品的测试方法。
(二)电热原子吸收光谱法(ET-AAS)同时测定沉积物中的 As、Cd、Cu、Cr、Ni、Pb和Ti
María A(2012)使用ET AAS同时测定了沉积物中重金属As、Cd、Cu、Cr、Ni、Pb和Ti的总量及其分布情况。该方法使用3×3的Box-Behnken 设计矩阵。对修改后的BCR连续萃取方案和总分布分析矩阵的条件进行了优化,以确定适当的雾化温度和群众钯(NO3)2和Mg(NO3)2。考虑对所有矩阵中的元素进行同时测定,在不使用的化学改性剂的情况下,在1700℃下对Cd和Ti进行雾化,2100℃下雾化砷、铜、铬、镍和铅,使用一个标准的校准曲线校准。得到的砷、镉、铬、铜、镍、铅和铊的检测限分别为36.5pg、1.8pg、6.5pg、28pg、34pg、46.5pg、48pg和0.11μg/g、0.001μg/g、0.022μg/g、0.04μg/g、0.2μg/g、0.03μg/g、0.003μg/g。通过分析3个泥沙质标准参考物质(CRM直流73315和LKSD的NCS-4的总含量和BCR 701可用的分数),对该方法进行了验证,得到良好的精度(P=0.05,并显示出每个矩阵中的每个元素的高回收率),除了总砷的分布矩阵,其中被分析物的损失可以归因于样品处理过程中用的HNO3。该方法的精度在0.6%和6%之间。
(三)冷原子吸收测定废水中的As、Se和Hg
Aaron等使用PinAAcle 900T光谱仪和FIAS 400流动注射系统,应用Winlab 32TM数据平台分析测试了废水中的As、Se和Hg的含量,结果如表1所示。
表1 系统灵敏度指标
分析结果表明,该方法的检出限可以满足美国EPA生活饮用水卫生规范的要求,As和Se的检出限还可以满足加拿大环境委员会(CCME)的标准,该方法对Hg的检出能力可以达到加拿大土壤分析的检出限标准。但如果要达到CCME针对海洋保护提出的汞标准,该方法还需要配备流动注射系统(FIMS)或者更大的进样回路。
(四)contrAA® 700 火焰原子吸收光谱法测定长石中Fe、Ca、K、Na 和Mg的含量
2006年,德国耶拿公司推出了高分辨火焰/石墨炉一体连续光源原子吸收光谱仪contrAA® 700,该仪器使用高聚焦短弧氙灯、中阶梯光栅光谱仪(光学分辨率0.002nm,波长范围189~900nm)、CCD线阵检测器,可测量元素周期表中67个金属元素,同时还可能获得更多的光谱信息。
Song等(2010)使用contrAA®700测定了长石中的Fe、Ca、K、Na和Mg的含量(图1~图10)。
图1 铁的特征吸收峰图
图2 铁三维测试峰图
图3 钙的特征吸收峰图
图4 钙的特征吸收峰图
图5 钾的特征吸收峰图
图6 钾三维测试峰图
图7 钠的特征吸收峰图
图8 钠三维测试峰图
图9 镁的特征吸收峰图
图10 镁三维测试峰图
结果表明,采用连续光源原子吸收法可以快速、准确地测定长石中痕量金属元素Fe、Ca、K、Na、Mg的含量,即使样品消解液中待测元素含量超低,可以增加像素点数来提高灵敏度,这是连续光源原子吸收优于传统原子吸收的独一无二的特点之一;另外,某些元素含量超高(百分含量),如果选择次灵敏线,传统原子吸收往往由于分辨率和光源强度有限,存在光谱干扰以及灯能量不足的问题,无法避免稀释带来的误差。由于连续光源具有极高的分辨率(2pm)和足够高的发光强度,可以任意选择不同灵敏度的谱线,并且有效避免光谱干扰,与此同时,完全消除了稀释误差。
(五)火焰原子吸收光谱法测定铁矿石原料中K、Na、As、Sn、Pb、Zn的含量
Song等(2010)使用连续光源ContrAA® 700准确快速地测定了铁矿石原料中多种金属元素的含量,与传统原子吸收相比分辨率有了两个数量级的提升。高浓度金属钠的测定可以选择次灵敏线准确实现分析测定,从而有效地避免了稀释带来的误差。
样品经过酸前处理后,按一定比例稀释,用ContrAA® 700 火焰原子吸收光谱法进行测量。测量条件分别为:
国外地质矿产科技成果
其中Sn的标准曲线为:
国外地质矿产科技成果
三、资料来源
张华,王开奇.2008.石墨炉原子吸收光谱法测定化探样品中进的不确定度评定.矿床地质,27:91~95
www.analytik-jena.com.cn/ 宋春明等.德国耶拿分析仪器股份公司,2010
Aaron Hineman.Determination of As,Se and Hg in Waters by Hydride Generation/Cold Vapor Atomic Absorption Spectros
María A.Álvarez,Génesis Carrillo.2012.Simultaneous determination of arsenic,cadmium,copper,chromium,nickel,lead and thallium in total digested sediment samples and available fractions by electrothermal atomization atomic absorption spectros(ET AAS).Talanta,97(15):505~512
❷ 原子吸收光谱法原理是什么
原子吸收光谱法
(aas)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。aas现已成为无机元素定量分析应用最广泛的一种分析方法。
原子吸收光谱法该法具有检出限低(火熖法可达ng?cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。
在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(a)与样品中该元素的浓度(c)成正比。即
a=kc
式中,k为常数。据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。
该法主要适用样品中微量及痕量组分分析。
❸ 原子吸收分光光度法
原子吸收光谱法(atomicabsorptionspectrometry,AAS),又称原子吸收分光光度法(,AAS)是基于蒸汽相中待测元素的基态原子对其共振辐射的吸收强度来测定试样中该元素含量的一种仪器分析方法。它是测定痕量和超痕量元素的有效方法。具有灵敏度高、干扰较少、选择性好、操作简便、快速、结果准确、可靠、应用范围广、仪器比较简单、价格较低廉等优点,而且可以使整个操作自动化,因此近年来发展迅速,是应用广泛的一种仪器分析新技术。
❹ 应用原子吸收光谱法进行定量分析的依据是什么进行定量分析有哪些方法
原子吸收光谱法进行定量分析的依据是朗伯-比尔定律,最常见和简单的方法是标准曲线法。
❺ 原子吸收光谱法定量分析方法
转载:《分析测试网络网》
这是我写的“原子吸收光谱分析的定量分析方法”帖出来与大家共享,希望各位批评指正,在这先谢谢了~~
2.3 原子吸收光谱分析的定量方法
原子吸收光谱分析是一种动态分析方法,用校正曲线进行定量.常用的定量方法有标准曲线法、标准加入法和浓度直读法,如为多通道仪器,可用内标法定量.在这些方法中,标准曲线法是最基本的定量方法,是其他定量方法的基础.
2.3.1 标准曲线法
标准曲线法(standard curve method),又称校正曲线法(calibration curve method),是用标准物质配制标准系列,在标准条件下,测定各种标准样品的吸光度值Ai(i=1,2,3,…)对被测元素的含量 ci(i=1,2,3,…)建立校正曲线A=f(c),在同样条件下,测定样品的吸光度值Ax,根据被测元素的吸光度值Ax从校正曲线求得其含量cx.校正曲线如图2—4所示.
(对不起,图我现在都还没有画出来)图2—4 校正曲线及其置信范围(阴影部分表示置信范围)
校正曲线的质量对获得准确测定结果有着直接的影响,因此,我们在建立校正曲线过程中,应遵循以下的原则:
(1)选择精度好的分析方法在严格控制分析条件的情况下建立校正曲线;
(2)在保证校正曲线为线性的条件下,应尽可能扩大被测组分含量的取值范围;
(3)在实验工作量一定的情况下,适当增加实验点的数目、减少每一实验点的重复测定次数,比增加每一实验点的重复测定次数、减少实验点的数目能更有效地提高校正曲线的精度.但随着实验点数目的增加,校正曲线精度的提高速率越来越慢,实验点数目n大于6以后,精度提高速率很慢.从置信系数tα,f考虑,在 n6时,tα,f值减小的速率也很慢,校正曲线的置信范围变小的速率很慢,再靠进一步增加实验点数目提高标准曲线的精度是不合算的.因此,5~6个实验点建立校正曲线是合理的;
(4)被测组分的含量应尽可能位于校正曲线的中央部分.位于校正曲线高、低含量(浓度)两端的实验点的测定精度较位于曲线中央部分的实验点的测定精度差,因此,对校正曲线两端的实验点的测定次数要多一些;
(5)鉴于校正曲线低含量(浓度)区的测定精度较差,而空白溶液正位于这一测定精度差的区域,因此,以空白溶液校正仪器(即用空白溶液调零)是不合适的.合理的做法应是对空白溶液多进行几次测定,取其测定平均值,将它作为含量(浓度)为零的实验点参与校正曲线的拟合;
(6)由于“空白值”的测定误差较大,且为随机变量,不同的取样会得到不同的空白值,因此,在扣除空白值时,直接扣除用空白溶液测定的空白值不是一个好方法.用校正曲线拟合得到的截距值作为实际空白值扣除会得到更好的结果.这是因为截距值是统计平均值,它比由空白溶液直接测定的值更稳定,精度更好;
(7)测定未知样品时,重复测定可以提高估计值cx的精度,因此,在条件允许的情况下,多进行几次测定是有利的;
(8)检验校正曲线是否发生变化,最好用不同浓度的标准溶液进行检验.比如建立校正曲线时用浓度为c1、c3、c5、c7、c9的五个实验点,检验校正曲线是否发生变化时,最好用浓度为c2、c4、c6、c8、c10的五个实验点.这是因为当两条标准曲线无显着性差异时,可以用一条共同的标准曲线来拟合这10个实验点,实验点数目增加能有效提高标准曲线的精度.若用相同浓度的标准溶液进行检验,当用一条共同的标准曲线来拟合这两组实验点时,实验点数目并没有增加,仍然是5个实验点,只是增加了每一个实验点的精度,这样并不能有效地提高校正曲线的精度.
如读者有兴趣想进一步详细了解校正曲线的建立、如何进行校正曲线的显着性(相关性)检验、线性范围的确定、精度与置信区间的确定和利用校正曲线进行预报和控制以及两条校正曲线如何进行比较等问题,可参阅邓勃编写的《分析测试数据的统计处理方法》,北京清华大学出版社1995年版第5章.
2.3.2 标准加入法
对标准曲线法的定义中,可以看出分析结果的准确性直接依赖于标准系列与被分析样品的组成的精确匹配.但在实际分析工作中,样品的基体、组成和浓度千变万化,要找到完全与样品组成相匹配的标准物质是很困难的.
标准加入法(standard addition method)是在若干份等量的被分析样品中,分别加入0、c1、c2、c3、c4、c5等不同量的被测定元素标准溶液,依次在标准条件下测定它们的吸光度Ai(i=1,2,3,4,5,…),建立吸光度Ai对加入量ci的校正曲线(见图2—5).因为基体组成是相同的,可以自动补偿样品基体的物理和化学干扰,提高测定的准确度.校正曲线不通过原点,其截距的大小相当于被分析试样中所含被测元素所产生的响应,因此,将校正曲线外延与横坐标相交,原点至交点的距离,即为试样中被测元素的含量cx.
标准加入法所依据的原理是吸光度的加和性.我们在应用标准加入法时应注意以下几点:
(1)标准加入法只能用于校正曲线线性范围内才能得到正确结果,对非线性校正曲线,吸光度会导致测定结果偏高.因此,所有的测量都应在线性范围内;
(2)最低浓度的样品溶液最适宜的吸光度测量值在0.1~0.15范围内;最适宜的待测元素加入量是使测量值增加约2,3和4倍,一般至少测定4个点(包括样品溶液点),但各点必须仍在校正曲线的线性范围内;
(3)当伴生物对测定影响不太严重时,标准加入法可以消除物理干扰和与浓度无关的轻微的化学干扰,但不能消除有浓度有关的干扰如电离化学干扰,同时也不能消除光谱干扰和背景吸收的干扰.应采用相应的消除和减小以上干扰的措施后,再用标准加入法;
(4)应用标准加入法时扣除标准空白是必要的.空白和样品应该分别作标准加入法,然后作浓度扣除.因为两者基体不同、干扰不同,空白加标和样品加标的曲线的斜率是不同的,因此不能直接用扣除吸光度来计算.
2.3.3 浓度直读法
浓度直读法(concentration direct reading)的基础是标准曲线法.将标准曲线预先存于仪器内,只要测定了试样的吸光度,仪器自动根据内置的校正曲线算出试样中被测元素的浓度和含量,并显示杂仪器上.其测定的准确度直接依赖于:a、校正曲线的线性、稳定性;b、测得的试样吸光度值必须落在校正曲线动态范围内.前面已经提到,吸光度测量是一种动态测量,实验条件的变化,不可避免地引起吸光度值的变化,条件a不能保证.根据最小二乘线性回归的原理,平均值所在的实验点( , )一定落在校正曲线上.试样中被测元素含量偏离校正曲线线性范围的平均值 越远,测定结果的误差越大,而仪器通常没有明确浓度直读范围,不便控制.由此可见,浓度直读法定量的准确度要逊于标准曲线法和标准加入法.浓度直读法的优点是快速.
2.3.4 内标法
内标法(internal standard method)是相对强度法,是在标准试样和被分析试样中分别加入一定量的内标元素,在标准条件下测定分析元素和内标元素的吸光度比Ai/An,以Ai /An对ci(i=1,2,3,4,…)建立校正曲线,在同样条件下,测定试样中被测元素和内标元素的吸光度比Ax/An,根据所测得的吸光度比值从校正曲线求得试样中被测元素含量cx.内标法最大的优点是可以减少实验条件变动所引起的随机误差,提高了测定的精密度.
因为要同时测定被测元素与内标元素的吸光度,必须使用双通道原子吸收光谱仪器,而现在广泛使用的仪器是单通道原子吸收光谱仪器,因此,内标法在原子吸收光谱分析中很少应用.
内标元素与分析线对(被测元素的谱线为分析线,内标元素的谱线为内标线,两者组成分析线对)的选择:
(1)内标元素与被测元素在光源作用下应有相近的蒸发性质;
(2)内标元素若是外加的,必须是试样中不含有或含量极少可以忽略的;
(3)分析线对选择要匹配:或两条都是原子线,或两条都是离子线.尽量避免一条是原子线一条是离子线;
(4)分析线对两条谱线的激发电位应有相近.若内标元素与被测元素的电离电位相近,分析线对激发电位也相近,这样的分析线对称为“均匀线对”;
(5)分析线对波长应尽量接近.分析线对两条谱线应没有自吸或自吸很小,并不受其他谱对的干扰.
说明:文章内容引用了一些论坛中一些不知名的朋友的论述,在这里谢谢了啊~~~~
参考文献没有列出来:
邓勃主编.应用原子吸收与原子荧光光谱分析.北京:北京化工出版社,2003年;
邓勃.原子吸收分光光度法.北京:清华大学出版社,1981年;
邓勃.分析测试数据的统计处理方法.北京:清华大学出版社,1995年;
邓勃,何华 .原子吸收光谱分析.:化学工业出版社,2004年
朋友可以到行业内专业的网站进行交流学习!
分析测试网络网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析.这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址网络搜下就有.
❻ 1、原子吸收法的主要特点和测定对象是什么
原子吸收法的主要特点是c测定微量元素灵敏度高,分析速度快,准确度好;
原子吸收法的主要测定对象是金属元素(金属离子)。
❼ 怎样用原子吸收光谱法测定铁的含量
用原子吸收光谱法测定铁的含量的方法:
每种元素的原子能够吸收特定波长的光能,而吸收的能量值与该光路中该元素的原子数目成正比。用特定波长的光照射这些原子,测量该波长的光被吸收的量,与标准溶液制成的效正曲线对比,求出被测元素的含量。
原子吸收光谱(Atomic
Absorption
Spectros,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。此法是上世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。该法主要适用样品中微量及痕量组分分析。
❽ 原子吸收测定重金属的原理和方法如何
原子吸收光谱(Atomic Absorption Spectros,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。此法是20世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。该法主要适用样品中微量及痕量组分分析。