A. 基因组学研究方法
基因组学(英文genomics),研究生物基因组和如何利用基因的一门学问。用于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题
基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postgenome)研究,成为系统生物学的重要方法。
基因组学能为一些疾病提供新的诊断,治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。
基因组学的主要工具和方法包括: 生物信息学,遗传分析,基因表达测量和基因功能鉴定。
基因组学出现于1980年代,1990年代随着几个物种基因组计划的启动,基因组学取得长足发展。 相关领域是遗传学,其研究基因以及在遗传中的功能。
1980年,噬菌体Φ-X174;(5,368 碱基对)完全测序,成为第一个测定的基因组。
1995年,嗜血流感菌(Haemophilus influenzae,1.8Mb)测序完成,是第一个测定的自由生活物种。从这时起,基因组测序工作迅速展开。
2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。
基因组学是研究生物基因组的组成,组内各基因的精确结构、相互关系及表达调控的科学。基因组学、转录组学、蛋白质组学与代谢组学等一同构成系统生物学的组学(omics)生物技术基础。
基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics),又被称为后基因组(postgenome)研究,成为系统生物学的重要方法。
基因组DNA测序是人类对自身基因组认识的第一步。随着测序的完成,功能基因组学研究成为研究的主流,它从基因组信息与外界环境相互作用的高度,阐明基因组的功能。功能基因组学的研究内容:人类基因组 DNA 序列变异性研究、基因组表达调控的研究、模式生物体的研究和生物信息学的研究等。
(1)基因组表达及调控的研究。在全细胞的水平,识别所有基因组表达产物mRNA和蛋白质,以及两者的相互作用,阐明基因组表达在发育过程和不同环境压力下的时、空的整体调控网络。
(2)人类基因信息的识别和鉴定。要提取基因组功能信息,识别和鉴定基因序列是必不可少的基础工作。基因识别需采用生物信息学、计算生物学技术和生物学实验手段,并将理论方法和实验结合起来。基于理论的方法主要从已经掌握的大量核酸序列数据入手,发展序列比较、基因组比较及基因预测理论方法。识别基因的生物学手段主要基于以下的原理和思路:根据可表达序列标签(STS);对染色体特异性cosmid进行直接的cDNA选择;根据CpG岛;差异显示及相关原理;外显子捕获及相关原理;基因芯片技术;基因组扫描;突变检测体系,等等。
(3)基因功能信息的提取和鉴定。包括:人类基因突变体的系统鉴定;基因表达谱的绘制;“基因改变-功能改变”的鉴定;蛋白质水平、修饰状态和相互作用的检测。
(4)在测序和基因多样性分析。人类基因组计划得到的基因组序列虽然具有代表性,但是每个人的基因组并非完全一样,基因组序列存在着差异。基因组的差异反映在表型上就形成个体的差异,如黑人与白人的差异,高个与矮个的差异,健康人与遗传病人的差异,等等。出现最多基因多态性就是单核苷酸多态性(SNPs)。
(5)比较基因组学。将人类基因组与模式生物基因组进行比较,这一方面有助于根据同源性方法分析人类基因的功能,另一方面有助于发现人类和其他生物的本质差异,探索遗传语言的奥秘 。
结构基因组学是继人类基因组之后又一个国际性大科学热点,主要目的是试图在生物体的整体水平上(如全基因组、全细胞或完整的生物体)测定出(以实验为主、包括理论预测)全部蛋白质分子、
蛋白质-蛋白质、蛋白质-核酸、蛋白质-多糖、蛋白质-蛋白质-核酸-多糖、蛋白质与其他生物分子复合体的精细三维结构,以获得一幅完整的、能够在细胞中定位以及在各种生物学代谢途径、生理途径、信号传导途径中全部蛋白质在原子水平的三维结构全息图。在此基础上,使人们有可能在基因组学、蛋白质组学、分子细胞生物学以致生物体整体水平上理解生命的原理。
对疾病机理的阐明、对疾病的防治有重要应用意义。
发展回顾1998年4月,由美国国家医学科学院(NIGMS)和Wellcome Trust发起在英国召开了第一次国际结构基因组会议,美国、法国、英国、德国、加拿大、日本、荷兰、意大利以及以色列的9国科学家参加了会议。2000年9月,美国NIGMS决定首批投入1.5亿美元,在美国建设7个研究中心(目前已经发展成为10个),争取在未来10年内解出1万个蛋白质的三维结构,建立蛋白质的氨基酸残基序列、三维结构和生物功能之间的有机联系,同时也支持结构基因组方法学的研究。2002年,10家大型国际制药公司宣布启动结构基因组研究。2000年11月,日本组织召开国际会议讨论结构基因组计划的有关问题,确定了完成测定3000个蛋白质三维结构的“Protein3000计划”。2001年4月,在美国召开了第二次国际结构基因组会议,表明新一轮大规模的国际合作研究已经开始。主要进展我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。在国际结构基因组研究刚露端倪之时,我国科学家就敏感地抓住了这一新动向,2000年我国开展了结构基因组学的研究。近来,国家863计划、973计划、中国科学院知识创新工程、国家重大攻关项目、自然科学基金先后重点资助了结构基因组学的研究工作和相关技术平台的建设。相关研究工作既有分工、又有交叉合作,并充分地考虑到了我国基因组水平研究的特点和我国在结构解析方法研究在国际上的地位。并计划在参加国际合作的基础上,在逐步建立基因组研究技术平台的同时,五年之中完成200-300个蛋白质三维结构的测定。
我国的结构生物学研究队伍近年来不断发展壮大,中国科学院生物物理所、中国科技大学、北京大学、清华大学以及中国科学院物理所、高能所、上海生命科学院、福州物质结构所、上海复旦大学等单位均是我国开展结构基因组研究的重要基地。
我国结构基因组学研究虽然启动时间较短,但已经获得了不少重要进展。 据初步统计,已经完成了近千个克隆,已表达出210个蛋白质,其中有100多个可溶或部分可溶;获得近30个结晶和NMR样品,已经测定出5个结构。
B. 细胞生物学的研究方法
细胞生物学广泛地利用相邻学科的成就,在技术方法上是博采众长,凡是能够解决问题的都会被使用。例如用分子生物学的方法研究基因的结构,用生物化学、分子生物学的方法研究染色体上的各种非组蛋白和它们对基因活动的调节和控制或者利用免疫学的方法研究细胞骨架的各种蛋白(微管蛋白、微丝蛋白、各种中等纤维蛋白)在细胞中的分布以及在生命活动中的变化。起源于分子遗传学的重组DNA技术和起源于免疫学的产生单克隆抗体的杂交瘤技术,也成了细胞生物学的有力工具。显然,一种方法所解决的问题不一定属于原来建立这一方法的学科。例如用分子生物学的方法解决了核小体的结构,严格地说这应是形态学的范畴。这样的例子并不少见,在这里学科的界限也被抹掉了。也许可以说细胞核移植、微量注射和细胞融合是细胞生物学自身发展起来的方法,但是用这些方法进行的实验往往也需要其他方法配合来做进一步分析。 细胞生物学与其说是一个学科,倒不如说它是一个领域。这可以从两个方面来理解:一是它的核心问题的性质──把发育与遗传在细胞水平结合起来,这就不局限于一个学科的范围。二是它和许多学科都有交叉,甚至界限难分。例如,就研究材料而言,单细胞的原生动物既是最简单的动物,也是最复杂的细胞,因为它们集许多功能于一身;尤其是其中的纤毛虫,不仅对于研究某些问题,例如纤毛和鞭毛的运动,特别有利,关于发育和遗传的研究也积累了大量有价值的资料。但是这类研究也可以列入原生动物学的范畴。其次,就研究的问题而言,免疫性是细胞的重要功能之一,细胞免疫应属细胞生物学的范畴,但这也是免疫学的基本问题。
由于广泛的学科交叉,细胞生物学虽然范围广阔,却不能像有些学科那样再划分一些分支学科──如象细胞学那样,根据从哪个角度研究细胞而分为细胞形态学、细胞化学等。如果要把它的内容再适当地划分,可以首先分为两个方面:一是研究细胞的各种组分的结构和功能(按具体的研究对象),这应是进一步研究的基础,把它们罗列出来,例如基因组和基因表达、染色质和染色体、各种细胞器、细胞的表面膜和膜系、细胞骨架、细胞外间质等等。其次是根据研究细胞的哪些生命活动划分,例如细胞分裂、生长、运动、兴奋性、分化、衰老与病变等,研究细胞在这些过程中的变化,产生这些过程的机制等。
当然这仅是人为地划分,这些方面都不是各自孤立的,而是相互有关连的。从细胞的各个组分讲,例如表面膜与细胞外间质有密切关系,表面膜又不是简单地覆盖着细胞质的一层膜,而是通过一些细微结构──已经知道其中之一是肌动蛋白分子,这又联系到细胞骨架了──与细胞质密切相连。这样,表面膜才能和细胞内部息息相关。另一方面,从研究的问题出发,研究分裂、分化等生命现象,离不开结构的基础。例如研究细胞分裂就涉及到染色质怎样包扎成染色体,染色体的分裂和运动,细胞骨架的变化包括微管蛋白的聚合和解聚,与表面膜有关的分裂沟的形成,还有细胞分裂的调节与控制。再如研究细胞分化除去要了解某种细胞在分化过程中细胞器的变化、它们所特有的结构蛋白质的变化,主要地还要了解导致分化的物质基础以及这些物质怎样作用于基因调控的水平,导致有关的基因被激活。可见研究的重点尽管可以人为地划分,但一定要把细胞作为一个整体看待,一定要把生命过程和细胞组分的结构和功能联系起来。 既然细胞生物学的主要任务是把发育和遗传联系起来,细胞分化这个问题的重要性就不言而喻。因为就整个有机体而言,遗传特点不仅显示在长成的个体,而是在整个生命过程不断地显示出来。在细胞水平,细胞的分化也就是显示遗传特征的过程,例如鸟类、爬行类的水晶体,其中所含的晶体蛋白是α、β、δ三种,不同于哺乳类,后者含有α、β、γ三种。在鸟类的晶体分化中首先出现大量的δ晶体蛋白,但是在哺乳类晶体分化中却找不到这种蛋白。可见某种细胞的分化特征的出现,也就是它们的遗传特征的出现。但是这仅是在细胞水平就一种生化性状(特异的蛋白质)在一种特化细胞中的出现而言,情况当然还比较简单,如果涉及到一个由多细胞组成的形态学性状,情况会复杂得多,但是性状发生的过程仍然是遗传表现的过程。
像晶体细胞分化这样的例子,细胞生物学的术语称之为终末分化,也就是走向成熟的分化,其分化的产物就是这种细胞的终末产物。由于取材方便,产物比较单一易于分析等原因,细胞分化的研究中关于终末分化的研究占很大的比重,研究得比较多的是红细胞、肌细胞、胰脏细胞、晶体细胞、黑色素细胞、软骨细胞等。
一个经常被引用的例子是红细胞中血红素的转换。人类胚胎早期的红细胞中首先出现胚期血红素,后来逐渐被胎儿期血红素所代替,胎儿三个月之后,后者又被成体型血红素所代替。关于这些血红素已经有很多研究。例如它们各自由那些肽链组成,这些肽链在个体发育中交互出现的情况,它们各自的氨基酸组成和排列顺序,各个肽链的基因位点,以至基因的结构都已比较清楚,工作可以说是相当深入了。
但是,追根到底有些问题依然没有得到明确的解答,甚至没有解答──这也适用于关于其他细胞的终末分化的研究。例如,为什么胚期血红素会在红细胞而不在其他细胞中出现?为什么会发生血红素的转换?关于前一问题,有人曾分别地从鸡的输卵管细胞(不产生血红素)和红细胞(产生血红素)提取染色质,用酶来切割,观察到两种来源的染色质对酶的抵抗力不同。来自红细胞的易于受到酶的攻击,推测这可能由于核小体的构型不同。红细胞中含有珠蛋白基因段落的核小体构型较松弛,因而易于受到影响;构型较松弛也就为RNA聚合酶在上面转录产生信使RNA提供了条件。但是如果追问下去,为什么单单在红细胞里核小体的构型比较松弛?RNA聚合酶怎样识别出这样的段落?这些问题还需进一步研究。其次,关于胚期血红素向胎儿期血红素的转换。用两种荧光染料标记两种免疫抗体,观察到在同一红细胞中有两种血红素的存在,说明转换不是由于出现不同的细胞,而是由于同一细胞相继地产生了不同的血红素。是什么原因使得血细胞停止生产原有的而产生出新的血红素?也许可以说是发育的“程序”,但还要回答发育程序得以实现的物质基础是什么。所有这些问题的解答,将使我们对基因选择性表达的认识有极大的迈进。 实现了终末分化的细胞,已经失去了转变为其他细胞类型的潜能,只能向一个方面分化。例如红细胞,虽然发生血红素的转换,但不能转变为其他类型的正常细胞,与胚胎细胞相比,它们的情况要简单些,因为胚胎细胞在尚未获得决定的时候是具有广泛潜能的。拿中胚层细胞来说,它们既可以分化为肌细胞,也可以分化为前肾细胞、血细胞、间质细胞等。已经初步知道,外界因素可以影响中胚层细胞向肌细胞或红细胞的方向分化,但是这因素是什么,怎样作用,都一无所知。在这里,首先要使中胚层细胞向某一方向分化,然后那一方向(例如红细胞)所特有的一套终末分化的步骤才得以进行下去。形象化地说,中胚层细胞中似乎存在着向不同方向分化的开关,打开某一个开关(例如红细胞的),才能进行那一方向的分化,这当然比终末分化更复杂些,对此还一无所知。
C. 植物单细胞能再生,再生机制是什么样的该如何研究
中国科学院遗传与发育生物学研究所焦雨铃研究组与中国科学院大学生命科学学院汪颖研究组协作,发觉WUS与DRN是2个拟南芥叶肉细胞再生所必要的转录因子,并能推动再生。
在这个基础上,该研究明确提出了单细胞再生的“转录组挑选 ”实体模型:原生质体化时的遗传基因任意表述在单细胞水准造就了演变的基本,塑造标准挑选 出可以再生的基因的表达组成。这一研究为绿色植物单细胞再生体制给予了新理念。该体制很有可能在哺乳类动物多能干细胞的诱发中充分发挥,并为小动物细胞再生研究给予参考。
以上就是我的详细介绍,希望看完对大家有所帮助。大家还有别的意见,可以在下方留言区一起讨论。
D. 单细胞的培养方法有哪些
单细胞培养常见模型: ①在培养碟中原位单细胞微吸吮捕获、沉积分选培养模型传统的荧光活化细胞分选方法(FACS)采用流式细胞术用来分选细胞,是分子基础分选中普遍使用的方法。这种方法只能检测具有荧光活性的细胞,不但细胞存活率低、纯度低,而且极易破坏细胞组织。微吸吮单细胞分选培养模型是与倒置显微镜配合使用的,用于细胞筛选、提取、沉积的。 ◇ 可直接从培养皿中进行细胞分选 ◇ 分离粘结活细胞的细胞亚群,分离荧光或者冷光标记 ◇ 无标记的和荧光的细胞都可通过软件进行自动识别 ◇ 可确保细胞分离后活力,并且可培养 ◇ 分选荧光分子探针标记的特定细胞 ◇ 单细胞收集进行进一步培养、克隆,RNA 或者蛋白质制备 ◇ 免疫制备,进行目标细胞分类 ◇ 可对各种粘结细胞进行分类 ◇ 细胞筛选前的细胞培养 ◇ 一般的分选过程只需几分钟就可完成 ◇ 使用安装在显微镜上的荧光滤片可实现多通道监测 ◇ 分选速度为1Cell/秒每一个循环可筛选1~1000个细胞 ②单细胞培养分析跟踪板模型 ③使用把显微镜升级改造为纳米激光镊捕获操纵单细胞模型这种模型很简单,在已有显微镜上加上纳米激光器或芯片就可以了 ④使用活态单细胞激光拉曼光谱无损测定鉴别模型活态单细胞激光拉曼光谱无损测定鉴别模式可在无任何标记情况下对活细胞进行三维扫描测定其分子分布,更具优越性。活态单细胞激光拉曼光谱无损测定鉴别模式为医师,药师和生物学家提供了利用拉曼光谱的便利的方式,不仅可以识别各种基团,还可以对化合物进行高精确度分析,且对活细胞不需要使用生化标记物,荧光标记物或者抗体,对活细胞绝对安全。
E. 单细胞培养的方法有哪些各有什么特点
1.转瓶培养
这个比较老的工艺,在逐步淘汰,不过投资少,技术含量低,人员经少量培训就可以操作。
2.悬浮培养
非贴壁依赖性细胞的一种培养方式。
细胞悬浮于培养基中生长或维持。某些贴壁依赖性细胞经过适应和选择也可用此方法培养。增加悬浮培养规模相对比较简单,只要增加体积就可以子。深度超过5mm,需要搅动培养基,超过10cm,还需要深层通入CO2和空气,以保证足够的气体交换。
通过振荡或转动装置使细胞始终处于分散悬浮于培养液内的培养方法。
利用固体琼脂培养基对植物的离体组织进行培养的方法在植物遗传实验中已经得到广泛的应用。但这种方法在某些方面还存在一些缺点,比如在培养过程中,植物的愈伤组织在生长过程中的营养成分、植物组织产生的代谢物质呈现一个梯度分布,而且琼脂本身也有一些不明的物质成分可能对培养物产生影响,从而导致植物组织生长发育过程中代谢的改变而利用液体培养基则可以克服这一缺点,当植物的组织在液体培养基中生长时,我们可以通过薄层震荡培养或向培养基中通气用以改善培养基中氧气的供应。植物细胞的悬浮培养是指将植物细胞或较小的细胞团悬浮在液体培养基中进行培养,在培养过程中能够保持良好的分散状态。这些小的细胞聚合体通常来自植物的愈伤组织。
一般的操作过程是把未分化的愈伤组织转移到液体培养基中进行培养。在培养过程中不断进行旋转震荡,一般可用100~120 r/min 的速度进行。由于液体培养基的旋转和震荡,使得愈伤组织上分裂的细胞不断游离下来。在液体培养基中的培养物是混杂的,既有游离的单个细胞,也有较大的细胞团块,还有接种物的死细胞残渣。
在液体悬浮培养过程中应注意及时进行细胞继代培养,因为当培养物生长到一定时期将进入分裂的静止期。对于多数悬浮培养物来说,细胞在培养到第18~25d 时达到最大的密度,此时应进行第一次继代培养。在继代培养时,应将较大的细胞团块和接种物残渣除去。若从植物器官或组织开始建立细胞悬浮培养体系,就包括愈伤组织的诱导、继代培养、单细胞分离和悬浮培养。目前这项技术已经广泛应用于细胞的形态、生理、遗传、凋亡等研究工作,特别是为基因工程在植物细胞水平上的操作提供了理想的材料和途径。经过转化的植物细胞再经过诱导分化形成植株,即可获得携带有目标基因的个体。
F. 专家经验谈:如何开展单细胞qPCR分析(三)
如今,单细胞基因组学、转录组学、蛋白质组学和代谢组学研究不再是遥不可及。利用新兴的微流体方法和分子生物学技术,研究人员逐渐能从群体噪音中提取单细胞信号。《Genome
Technology》杂志请来了一些专家,来分享他们在单细胞qPCR分析上的经验。通过一问一答的形式,希望能为您的研究带来一点启发。??专家经验谈:如何开展单细胞qPCR分析(二)??专家经验谈:如何开展单细胞qPCR分析(一)Q5:您如何定量单细胞qPCR结果?Mikael
Kubista(TATAA生物中心)
单细胞表达谱数据的分析包括三个步骤:normalization、scaling和clustering。用参考基因的表达来均一化(normalization)不适用于单细胞,因为基因表达存在大的、不相关的变化。我们在原先的文章中展示了这一点,自那以后,几乎所有的基因和细胞都证明了这一点,除了mRNA代谢不活跃的细胞(如卵母细胞)外。更好的做法是均一化每个细胞的表达,也就是直接比较测得的量。这是最直观的。当然,这种方法不能说明样品处理过程中的损失,但我们发现那通常可忽略不计。如果您担心样品处理,那么上面提到的RNA加标可用于测定产量和重复性。对于表达谱分析,数据可以多种方法进行分析。数据可能是unscaled、mean-centered或
autoscaled。Mean
centering(减去平均值)和autoscaling(减去平均值并除以标准偏差)可平衡分析中标志物的权重。对于单细胞,我们有时候也觉得
Mean
centering和autoscaling很有用。Anders
St??hlberg(哥德堡大学)
如果避免了预扩增,数据可转换成绝对的cDNA数量,否则数据分析可以Cq值来开展,因为每个细胞的转录本水平呈对数正态分布。一开始,可以各种方法对数据作图,此外,基本的统计分析也应开展(如阳性细胞的数量、平均值和偏差)。细胞数量测定通常是以验证过的参考基因来均一化的。这种策略在单细胞分析中应避免,因为单个细胞中的所有转录本水平随时间变化。我们发现,校正分析和无监督算法(如Kohonen
self-organizing
maps)对定义亚群和基因网络很有用。Finn-Arne
Weltzien(挪威兽医学院)
我们在利用单细胞qPCR进行定量测定时很小心。我们通常只进行定性分析。如果我们定量,我们会利用目的基因的拷贝数相对参考基因的拷贝数。Weiwen
Zhang(亚利桑那州立大学,现在天津大学)
对于每个单细胞,我们对目的基因和参考基因进行qPCR分析,如原核生物的16s
rRNA和真核生物的28s或actin。不过,我们也注意到,这些常用参考基因的表达水平在单细胞中也差别很大,对大量细胞qPCR的标准定量法则也须特别谨慎。在大部分情况下,我们报告原始和均一化的Ct值,并使用它们进行单细胞qPCR结果的定量。Q6:您分析时使用哪些生物信息学工具?Mikael
Kubista(TATAA生物中心)
我们采用
GenEx进行单细胞分析。事实上,我们在所有qPCR数据分析中使用GenEx。GenEx强大、用户友好,且支持所有领先的qPCR仪器,这让从实验中导入数据和注释很简单。GenEx有着卓越的数据质量评估,对单细胞研究很重要,以及强大的单细胞表达谱工具。它有着用户友好的界面,即使是没有经验的用户也能使用那些强大的工具。Anders
St??hlberg(哥德堡大学)
我使用GenEx和SPSS开展数据分析。Weiwen
Zhang(亚利桑那州立大学,现在天津大学)
对于几十个基因的分析,我们采用ANOVA
student
t-test或其他简单的统计学工具。
G. 单细胞测序这样的高通量技术的优势具体体现在哪里
单细胞全基因组测序主要应用于肿瘤发生机制及胚胎发育研究。单细胞转录组分析可以在全基因组范围内挖掘基因调节网络,尤其适用于存在高度异质性的干细胞及胚胎发育早期的细胞群体。
2017年6月16日,北京大学生命科学学院生物动态光学成像中心汤富酬课题组在《Cell Research》杂志在线发表了题为“Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells”的研究论文。在国际上率先发展了对一个单细胞同时进行染色质状态、DNA甲基化、基因组拷贝数变异、以及染色体倍性的全基因组测序技术(single-cell COOL-seq),并采用这一技术在单细胞分辨率上系统、深入地解析了小鼠着床前胚胎发育过程中表观基因组重编程的关键特征,以及染色质状态与DNA甲基化之间的互动关系。
现有的基于高通量测序来分析全基因组染色质状态的研究方法通常需要大量细胞(例如ATAC-seq、DNase-seq、FAIRE-seq、MNase-seq等)。即使这些方法可以做到单细胞分辨率,也无法在单细胞分辨率上对多种组学之间的互动关系进行研究。而汤富酬课题组将NOMe-seq(全基因组核小体定位及DNA甲基化组测序)技术和PBAT-seq技术(全基因组重亚硫酸盐测序)巧妙地结合起来,并进行了系统的优化和提高,实现了对同一个单细胞进行多达5个层面的基因组和表观基因组特征的分析。 该课题组利用这一新建立的scCOOL-seq方法,在单细胞分辨率系统地描绘了小鼠着床前胚胎发育过程中表观基因组多个层面的动态变化。该项研究发现:
受精后12小时以内,来自高度特化的卵细胞和精子的雌雄原核就经历了大规模的基因组去甲基化。在此过程中,父母源基因组的染色体状态迅速打开,在受精卵的原核期就已经达到高度开放的状态,随后在受精卵晚期染色质开放程度大幅度回落,并在2-细胞阶段之后开放程度再次逐步增加,到囊胚期时达到最高点。
首次在单细胞分辨率系统分析了小鼠着床前胚胎发育过程中染色质状态的异质性。该研究发现在受精后12个小时以内受精卵中大部分基因的启动子区域就由均匀关闭状态迅速重编程为均匀开放状态,为合子基因在随后的转录做好准备。
首次在单细胞分辨率证明持续转录对于维持早期胚胎中大部分基因的启动子处于开放状态是必需的,染色质状态开放和转录活动互相促进,共同维持合子基因的稳定表达。
研究发现多能性核心因子Oct4的靶基因结合位点在4-细胞阶段就处于开放状态,远早于真正建立多能性的囊胚期,暗示这些位点作为潜在的顺式调控元件可能参与了早期胚胎细胞的命运决定过程。
首次在单个细胞内对父母源基因组的染色质状态以及DNA甲基化进行了深入分析。研究发现,受精后染色质状态和DNA甲基化进行了不同步的重编程过程,父母源基因组的染色质状态快速重编程、在每个单细胞中迅速达到精确平衡并一直维持。而DNA甲基化的重编程要慢一些并在父母源基因组之间维持不对称分布。
首次在单细胞分辨率解析了雌性胚胎细胞中父母源X染色体的DNA甲基化和染色质状态重编程过程的异同。研究发现受精后,在雌性胚胎中失活的父源X染色体其DNA甲基化重编程速度要明显慢于活跃的母源X染色体,二者之间DNA甲基化的差异一直到囊胚晚期才逐渐消除;而雌性胚胎中父母源X染色体同步进行快速的染色质状态重编程,并在整个植入前时期维持这一父母源X染色体之间染色质状态的精确平衡。
首次在单细胞分辨率揭示了小鼠植入前胚胎发育过程中表观基因组的异质性。受精后,启动子区域DNA甲基化异质性强烈的基因和染色质状态异质性强烈的基因分别是两类不同的基因。这暗示在小鼠着床前胚胎发育的过程中,染色质状态异质性和DNA甲基化异质性可能分别受不同机制的调控。
首次在单细胞分辨率将细胞周期与染色质状态联系了起来,准确推断出每个单细胞的倍性和细胞周期阶段,并发现小鼠着床前胚胎在体内发育过程中和胚胎干细胞使用了基本相同的一组DNA复制起始位点。
该研究系统地描绘了高度特化的配子在受精后重编程到具有发育全能性的受精卵、以及进一步发育成多能性胚胎的过程中,DNA甲基化和染色质状态发生的精准、有序的变化,各个组学层面之间的互动关系,以及父母源基因组在着床前胚胎发育中DNA甲基化和染色质状态的重编程过程。该工作为今后人们继续研究哺乳动物早期胚胎细胞全能性和多能性的开启奠定了基础,同时为体细胞克隆效率的提高以及早期胚胎发育异常的诊断与治疗提供了新思路。 北京大学生命科学学院BIOPIC中心的博士后郭帆博士、博士生李琳、李静云为该论文的并列第一作者;北京大学生命科学学院汤富酬研究员和四川大学郭帆研究员为这篇文章的共同通讯作者。该研究工作由北京大学和四川大学共同合作完成,并且得到了国家自然科学基金委员会、北京未来基因诊断高精尖创新中心,以及北大-清华联合中心的资助。