导航:首页 > 研究方法 > 求职数据分析方法

求职数据分析方法

发布时间:2022-07-20 08:05:37

如何学习成为一名数据分析师

学习数据分析师之前,你必须清楚自己想要达成什么目标。也就是说,你想通过这门技术来解决哪些问题或实现什么计划。有了这个目标,你才能清晰地开展自己的学习规划,并且明确它的知识体系。

② 新手怎么学习数据分析

第一方面是数学基础,第二方面是统计学基础,第三方面是计算机基础。要想在数据分析的道路上走得更远,一定要注重数学和统计学的学习。数据分析说到底就是寻找数据背后的规律,而寻找规律就需要具备算法的设计能力,所以数学和统计学对于数据分析是非常重要的。

而想要快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用过程中,辅助算法以及行业致死的学习。学习数据分析工具往往从Excel工具开始学起,Excel是目前职场人比较常用的数据分析工具,通常在面对10万条以内的结构化数据时,Excel还是能够胜任的。对于大部分职场人来说,掌握Excel的数据分析功能能够应付大部分常见的数据分析场景。

在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。

数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

③ 求职数据分析师有哪些小技巧

1. 职位搜索


我们平常搜索求职岗位的时候,总是还接搜索岗位名称,但有时候搜索出来的,符合我们各方面要求的岗位,不是很多,又或者是自己的目标公司并没有数据分析一职,这时候我们可以通过搜索一些职位相关的关键字,例如数据分析常用的工具是python,我们可以直接在职位搜索框搜索python,这样一来,搜索的范围会变大。因为目前各公司对于数据分析的要求不同,职位设置也不相同,通过搜索职位相关的关键字,范围会比较广,定位也会相对准确一些。


2. 简历投递


找到自己的目标公司或职位之后,接下来就要准备投递简历了。这这里简单提一句简历制作,应聘数据分析相关岗位,简历中一定要体现自己数据分析的成果和思维。简历制作完成之后,尽量选择多平台投递,但不要海投。简历投递时间,尽量在早上或者晚上,因为正常上班时间hr一般都会处理面试、人事统计等一些相关工作。


关于求职数据分析师有哪些小技巧,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

④ 如何准备数据分析师面试需要具备哪些能力

【导读】众所周知,随着社会的发展,数据分析师成为了炙手可热的热门执业,一方面是其高薪待遇另一方面就是其未来广阔的发展前景。那么对于想入行的求职者们,如何准备数据分析师面试?需要具备哪些能力呢?小编认为需要具备以下几项能力,一起来看看吧!希望对大家有所帮助。

1. 理论知识(概率统计、概率分析等)

掌握与数据分析相关的算法是算法工程师必备的能力,如果你面试的是和算法相关的工作,那么面试官一定会问你和算法相关的问题。比如常用的数据挖掘算法都有哪些,EM
算法和 K-Means 算法的区别和相同之处有哪些等。

有些分析师的工作还需要有一定的数学基础,比如概率论与数理统计,最优化原理等。这些知识在算法优化中会用到。

除此以外,一些数据工程师的工作更偏向于前期的数据预处理,比如 ETL
工程师。这个职位考察你对数据清洗、数据集成的能力。虽然它们不是数据分析的“炼金”环节,却在数据分析过程中占了 80% 的时间。

2. 具体工具(sklearn、Python、Numpy、Pandas 等)

工程师一定需要掌握工具,你通常可以从 JD 中了解一家公司采用的工具有哪些。如果你做的是和算法相关的工作,最好还是掌握一门语言,Python
语言最适合不过,还需要对 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。

数据 ETL 工程师还需要掌握 ETL 工具,比如 Kettle。

如果是数据可视化工作,需要掌握数据可视化工具,比如 Python 可视化,Tableau 等。

如果工作和数据采集相关,你也需要掌握数据采集工具,比如 Python 爬虫、八爪鱼。

3. 业务能力(数据思维)

数据分析的本质是要对业务有帮助。因此数据分析有一个很重要的知识点就是用户画像。

用户画像是企业业务中用到比较多的场景,对于数据分析来说,就是对数据进行标签化,实际上这是一种抽象能力。

以上就是小编今天给大家整理发送的关于“如何准备数据分析师面试?需要具备哪些能力?”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。

⑤ 数据分析需要掌握些什么知识

我们先从整体上了解数据分析师要掌握的技能有哪些,然后再从具体职位类别来看,不同的职位具体要掌握的技能有哪些。

这样你就能根据自己的实际情况,有针对性的准备和学习。

一、数据分析的胜任力模型是什么?

从整体上来看,数据分析师需要掌握的能力有很多,从总体上可以分为以下几类,这些能力构成了数据分析师的能力模型。


1)理论基础,包括统计学

2)数据分析工具,常用的分析工具有 Excel,SQL,Python 等

3)可视化工具,常用的有 Excel,商业智能(Business Intelligence,BI)

4)业务知识,包括常用的指标、某行业的业务流程

5)数据分析思维,包括常用的分析方法

6)通用能力,包括 PPT、沟通能力

下面我们来详细看下每一种能力的要求。

  1. 理论基础:统计学

  2. 数据分析背后的理论基础是统计学。所以,掌握了统计学以后我们才能去看懂数据表达的意义是什么。举个例子,给你一家公司员工的工资,是平均值能代表这家公司的工资水平,还是中位数能代表?

  3. 如果没学过统计学,那么可能只认识这里的平均值,而不知道中位数这个知识。但是,如果你学过了统计学就会知道,中位数比平均值更能反映出数据的集中表现。

  4. 统计学的内容比较多,详细又可以分为两类内容:描述统计分析、推论统计分析。

  5. 什么是描述统计分析?

  6. 对大量信息进行归纳是处理数据时最基本的任务。中国约有 14 亿人,一张记录每位中国人的姓名和收入的电子表格包含了我们衡量这个国家经济健康状况所需的所有信息,通常我们也将多个数据集合在一起的东东叫“简称数据集”。但这张信息过量的表格其实相当于什么都没有告诉我们。这就是让人觉得讽刺的地方:经常是数据越多,事实越模糊。

  7. 因此,我们需要简化,将一系列复杂的数据减少为几个能够起到描述作用的数字,正如奥运会体操比赛中,我们将一套多难度组合的复杂动作浓缩为一个得分:9.8 分。

  8. 描述统计分析就是将一系列复杂的数据减少为几个能够起到描述作用的数字,用这些有代表性的数字来代表所有的数据。这样在面对一大堆数据时,你可在不知道所有数据的情况下就能知道数据的整体情况。

  9. 这就好比,我们通常一说起美女,能想到的是这样几个指标:长腿,大眼睛,脸蛋好看。虽然全国有那么多美女,你也没有见过全部的美女,但是你却能通过这样几个代表美女的指标就可以大概知道什么是美女。

同样的,描述统计学的关键点在于,找到几个关键的数字来描述数据的整体情况。那么,问题就来了,能担当起这样重要责任的数字有哪些呢?描述数据的整体情况,我们可以用 4 个指标来做,分别是:平均值、四分位数、标准差和标准分。例如,前面我们在拿到工资数据,就可以用“中位数”这样的数字来描述工资的整体情况。

所以,描述统计分析就是掌握 4 个指标:平均值,四分位数,标准差和标准分。

什么是推论统计分析?

推论统计分析就是通过样本来推断出总体。需要掌握的知识包括概率分布、中心极限定、如何用样本估计总体、置信区间、假设检验。例如,互联网常用的 AB 测试背后的原理就是假设检验,如果不掌握推论统计分析,那么连 AB 测试的结果也看不懂,更不用说完成一个 AB 测试实验。

2.数据分析工具

很多人看到现在 Python 很火,就不管自己的能力水平如何,就一头扎进学习 Python 的大潮,最后发现其实自己学不会,或者学完用不上。

这其实是不对的,真正工作里最常用的数据分析工具其实是 Excel,SQL。所以,如果你的零基础,不建议一上来就学 Python,而是先学会 Excel 分析数据,然后学会 SQL。

这样你学会了常用的分析工具,然后再学 Python 才是加分项。同时,这样学习的顺序还有一个好处,如果你是零基础没学过编程,一上来学 Python,大概率是学不会的。但是如果你学过用 Excel、SQL 处理数据,那么就具备了一定的基础,再学 Python,很多概念就会理解起来比较容易。

这就好比,一个婴儿不是一上来就学习跑步(Python),而是先把走路学会,具备了走路(Excel、SQL)的基础,再跑步就容易多了。


需要注意的是,除非是工作必须要求的,其他少部分公司用的工具其实不需要学习。比如有些公司要求其他编程语言,例如 R、SPSS、SAS 这些工具。

现在 Pyhon 已经是人工智能排名第一的编程语言了,大部分公司要求 Python,很少部分的公司要求其他的编程语言,所以学习市场要求最多的那个技能才能找到更多机会。如果你学习了少部分公司才要求的工具,那么意味着你找工作或者跳槽只能选择这些公司,而会错失其他大部分公司的求职机会,对你整个职业生涯不利。

TIOBE 编程语言排行榜是全球编程语言流行趋势的一个指标,每月更新,官网地址(https://www.tiobe.com/tiobe-index)。下图是 2021 年 2 月份排名前 10 的编程语言的变化图,其中橙色曲线是 Python,我们会发现 Python 的流行趋势越来越高。

3.可视化工具

常用的可视化工具包括 Excel、商业智能(BI)。

一般的可视化图表用 Excel 里的图表功能就可以实现,而且使用起来也方便。如果是要经常做报表,并且要求实现报表自动化,那么就需要用到商业智能(BI)工具。

那什么是商业智能(BI)呢?

微软官方给的定义是“使用用于自助服务和企业商业智能 (BI) 的统一、可扩展平台(该平台易于使用,可帮助获取更深入的数据见解),连接到任何数据并对数据进行可视化。 ”

毫无悬念,看这种官方定义就是看不懂。简单来说就是把数据导入商业智能(BI)工具中,就可以快速对数据可视化。例如下图就是把数据导入用商业智能(BI)工具中,通过可视化数据来分析。


IDC《2019 年下半年中国商业智能软件市场数据跟踪报告》显示,在中国商业智能软件子市场中,报表分析仍是目前市场最主要的需求,2019 年全年年市场份额占比为 79.0%。高级分析和预测分析市场份额占比 21.0%(下图)。


常用的商业智能(BI)工具有哪些呢?

目前使用最多的商业智能(BI)工具是 Power BI、Tableau、帆软,选择其中任意一种学习就可以了。

4.业务知识

因为数据分析是用来解决具体行业问题的,需要从业务的角度出发,了解各个指标,以及每个指标之间的关系,还需要联系业务去理解数据。所以,工作中数据分析脱离不了业务,在分析中要找到导致问题发生的根本原因,而不只是单纯的统计数据。

因此需要具备某个行业的业务知识才能去理解这个行业里的术语、业务问题等。

业务知识包括某个行业的常用指标、业务流程。需要注意的是,不同行业的指标、业务流程是不一样的,所以需要学习的时候针对你的目标行业去学习准备。例如,下图分别是金融信贷行业、在线教育行业的业务流程。

金融信贷行业业务流程(来自书《数据分析思维》)

在线教育业务流程(来自书《数据分析思维》)

如果是刚入门,这块内容做到了解即可,等进入工作以后,再慢慢深入业务,积累业务经验。具体某个行业的常用指标、业务流程可以看书《数据分析思维》,这本书里涉及了 10 多个行业的指标、业务流程。

5.数据分析思维

在数据分析相关的职位里经常会写这么一条招聘要求“具备数据分析思维”。在工作或者面试中,会经常听到分析思维、分析思路、分析方法。这三个词语有什么关系呢?其实简单来说,它们都是指分析方法。

数据分析思维需要你掌握 10 种常用的分析方法。

数据分析 10 种常用的分析方法

如果你的分析目的是想将复杂问题变得简单,就可以使用逻辑树分析方法,例如经典的费米问题就可以用这个分析方法。

如果你的分析目的是做行业分析,那么就可以用 PEST 分析方法,例如你想要研究中国少儿编程行业。

如果你想从多个角度去思考问题,那么就可以用多维度拆解分析方法,例如找相亲对象,需要从多个角度去分析是否合适。

如果你想进行对比分析,就要用到对比分析方法,例如你朋友问自己胖吗,就是在对比。

如果你想找到问题发生的原因,那么就要用到假设检验分析方法,其实破案剧里警察就是用这个方法来破案的。

如果你想知道 A 和 B 有什么关系,就要用到相关分析方法,例如豆瓣在我们喜欢的电影下面推荐和这部分电影相关的电影。

如果你想对用户留存和流失分析,就要用到群组分析方法,例如微博用户留存分析。

如果你想对用户按价值分类,那么就要用到 RFM 分析方法,例如信用卡的会员服务,就是对用户按价值分类,对不同用户使用不同的营销策略,从而做到精细化运营。

如果你想分析用户的行为或者做产品运营,就要用到 AARRR 模型分析方法,例如对拼多多的用户进行分析。

如果你想分析用户的转化,就要用到漏斗分析方法,例如店铺本周销量下降,想知道是中间哪个业务环节出了问题。

6.通用能力

通用能力包括 PPT 制作分析报告、沟通能力。

在工作中,要经常做分析结果做成数据分析报告,然后展示给业务部门、上级领导、客户等,而这种展示数据分析报告的场景常用的工具就是 PPT,所以就要求你会用 PPT 制作数据分析报告,有较好的的文字、书面总结能力。

职业社交网站领英发布的《2018 新兴工作岗位报告》报告里说,最大的技能缺口是软技能,比如口头交流、领导力和时间管理等。这份报告中建议,职场人士需要在快速变化的工作环境中,学习并保持软技能,因为拥有这些技能的人才具备更大的职场优势。

其实,任何职位都需要沟通能力,但是,数据分析师对沟通能力的要求更高。因为,数据分析师解决的是实际的问题,需要跨部门沟通业务,做好的数据分析报告也要展示给各个部门、领导、客户,只有好的沟通能力,才能让你的分析结果得到用户的认可。 那么这些通用能力如何提升呢?最直接的方式,就是通过写文章来提升。

通过写作可以同时提升你下面 3 个能力:

1)逻辑能力

写作的本质其实是把一件事情讲清楚,而逻辑能力强的人写出来的内容,读起来更顺畅。

2)文字表达能力

数据分析师要经常做数据分析报告,和通过邮件汇报分析结果。这体现的其实就是文字表达能力,提高这个能力的办法就是不断去写作。

3)沟通能力

写作其实就是把想说的话通过文字和你的用户去沟通。另外,经常在社群里提问和解答他人的问题,也可以提高你的沟通能力。你会看到不同人提问的水平是不一样的,有的人可以完整的把一个问题描述清楚,有的人说完,其他人也不明白他的问题是什么。这其实就是体现了沟通能力。

二、不同职位的数据分析能力要求有什么不一样?

经过前面的分析,我们从整体上知道了数据分析师需要掌握的能力。但并不是说,这些能力全都掌握了你才能找到一份数据分析师的工作。因为不同的职位的要求不一样的。在《职业发展前景:数据分析师的晋升通道》章节我们知道了数据分析相关职位的分类。


我把胜任力模型中的这些能力对应到不同的职位,就可以清楚的看到对应职位的能力要求(下图)。


有一个误区,很多人以为只要掌握了分析工具,就掌握了数据分析,其实不是的。从图中,我们可以看出。各个数据分析职位都需要的能力是:业务知识、分析思维、PPT、沟通能力。这些能力才可以让你从一个只会舞弄工具的普通职场人变成真正解决业务问题的职场高手。

很多人以为数据分析师需要掌握很高大的工具,其实不是的。例如腾讯里有一个岗位叫“商业数据分析师”,这听起来很高大上。其实这个职位对应的就是上图初级数据分析师的能力要求,也就是理论基础(描述统计分析),分析工具(Excel),可视化工具(Excel)。

上图中黄色标出的是相对于前一职位多出来的能力。中级数据分析师在初级数据分析师要求的能力上增加了分析工具(SQL),可视化工具(商业智能 BI)。高级数据分析师在中级数据分析师要求的能力上增加了理论基础(推论统计分析),分析工具(Python)。

Excel、SQL、Python 要掌握到什么程度?

我们知道了数据分析师最常用的分析工具是 Excel、SQL、Python。那么问题就来了,这些分析工具具体掌握哪些内容呢?

⑥ 如何准备数据分析师面试

1. 理论知识(概率统计、概率分析等)


掌握与数据分析相关的算法是算法工程师必备的能力,如果你面试的是和算法相关的工作,那么面试官一定会问你和算法相关的问题。比如常用的数据挖掘算法都有哪些,EM 算法和 K-Means 算法的区别和相同之处有哪些等。


有些分析师的工作还需要有一定的数学基础,比如概率论与数理统计,最优化原理等。这些知识在算法优化中会用到。


除此以外,一些数据工程师的工作更偏向于前期的数据预处理,比如 ETL 工程师。这个职位考察你对数据清洗、数据集成的能力。虽然它们不是数据分析的“炼金”环节,却在数据分析过程中占了 80% 的时间。


2. 具体工具(sklearn、Python、Numpy、Pandas 等)


工程师一定需要掌握工具,你通常可以从 JD 中了解一家公司采用的工具有哪些。如果你做的是和算法相关的工作,最好还是掌握一门语言,Python 语言最适合不过,还需要对 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。


数据 ETL 工程师还需要掌握 ETL 工具,比如 Kettle。


如果是数据可视化工作,需要掌握数据可视化工具,比如 Python 可视化,Tableau 等。


如果工作和数据采集相关,你也需要掌握数据采集工具,比如 Python 爬虫、八爪鱼。


3. 业务能力(数据思维)


数据分析的本质是要对业务有帮助。因此数据分析有一个很重要的知识点就是用户画像。


用户画像是企业业务中用到比较多的场景,对于数据分析来说,就是对数据进行标签化,实际上这是一种抽象能力。


关于如何准备数据分析师面试,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑦ 如何通过招聘数据分析来挖掘商业洞察

每个人在网络上留下的包含着其生活轨迹、社交言行等个人信息的网络数据,依靠对这些数据的分析,从个人的网上行为中剥离出他的兴趣图谱、性格画像、能力评估,基于数据挖掘的人才推荐平台人才雷达(Talent Radar)帮助企业更高效的实现人岗匹配,提供猎头服务。

为了评估一个技术人员的专业技能,人才雷达利会利用其在专业论坛(如Github、CSDN、知乎、丁香园等)上的发帖数、内容被引用数、引用人的影响力等数据,通过这些信息建模,完成其专业影响力的判断。同时,微博的数据也被充分利用起来。

其中折射出的社交关系也是判断一个人职业能力的因素之一。所以,判别用户在社交网络上其好友的专业影响力也是人才雷达推荐系统中的一个重点。同时,即使被推荐者的个人能力难以符合职业需求,但如果他有着能力不错的好友关系,则也可以作为合适的"推荐人"将任务传播到下一层级当中。

不同用户在社交网络上的行为习惯也是不同的,例如发微博的时间规律,在专业论坛上的时间长短,这些行为模式可以用来判别其工作时间规律,看其是否符合对应的职位需求。

通过各种数据源的融合和分析,人才雷达不仅能够在节省成本的前提下帮助企业提高人才招聘的效率。与传统的猎头业务相比,其采用群体智慧的方式能够更广泛和客观的筛选人才,并且由于其被动测量的方式也能在一定程度上避免直接面试时部分求职者的虚假表现。它现在的客户有淘宝、微软、网络等知名企业。

⑧ 如何选择工作分析的方法

1.直接观察方法: 职务分析师直接观察员工工作的全过程。直接观察适用于工作周期短的职务。例如清洁工,他的工作基本上是以一天为一个周期,职务分析师可以整天跟着清洁工直接观察工作。
2.阶段观察法: 有些员工的工作周期性很长。为了完全观察员工的所有工作,必须分阶段观察。比如行政文员,每年年底都要准备企业总结表彰大会。职务分析师必须在年底观察职务。有时候因为时间跨度太长,职务分析不能拖很久,所以采用工作表...
3.工作表演: 适用于工作周期长、突发事件多的工作

阅读全文

与求职数据分析方法相关的资料

热点内容
乐视手机位置信息在哪里设置方法 浏览:198
藏红花的食用方法及用量 浏览:73
深圳房产的计算方法 浏览:478
怎么验算有余数除法的方法 浏览:986
能量杯使用方法 浏览:210
cvd常用制膜方法 浏览:411
如何读书写作的方法和技巧 浏览:648
治疗湿尤方法 浏览:290
英语快速说话方法 浏览:610
机构退休金计算方法 浏览:365
小楷正确拿笔方法 浏览:475
专卖店茅台盒子酒鉴别真伪的方法 浏览:460
宾得k50使用方法 浏览:228
让磁铁自由旋转的方法有哪些视频 浏览:404
雷克萨斯山地车安装方法 浏览:264
饮用水高氟水最佳解决方法 浏览:500
常用的安全风险分析评估方法有作业条件危险 浏览:346
手机游戏投屏到电视盒子方法 浏览:672
油锯使用方法图解 浏览:356
苹果6s手机桌面设置在哪里设置方法 浏览:633