导航:首页 > 研究方法 > 疲劳寿命分析方法

疲劳寿命分析方法

发布时间:2022-07-17 11:55:17

㈠ 低周疲劳和高周疲劳在疲劳寿命计算中的不同点

为便于分析研究,常按破坏循环次数的高低将疲劳分为两类:①高循环疲劳(高周疲劳)。作用于零件、构件的应力水平较低 ,破坏循环次数一般高于104~105的疲劳 ,弹簧、传动轴等的疲劳属此类。②低循环疲劳(低周疲劳)。作用于零件、构件的应力水平较高 ,破坏循环次数一般低于104~105的疲劳,如压力容器、燃气轮机零件等的疲劳。实践表明,疲劳寿命分散性较大,因此必须进行统计分析,考虑存活率(即可靠度)的问题 。具有存活率p(如95%、99%、99.9%)的疲劳寿命np的含义是 :母体(总体)中有p的个体的疲劳寿命大于np。而破坏概率等于( 1- p ) 。常规疲劳试验得到的s-n曲线是p=50%的曲线 。对应于各存活率的p的s-n曲线称为p-s-n曲线。

疲劳(2)
fatigue

材料、零件和构件在循环加载下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹、或使裂纹进一步扩展直到完全断裂的现象。
研究简史 有记载的最早进行疲劳试验是德国的w.a.艾伯特 。法国的j.-v.彭赛列首先论述了疲劳问题并提出“疲劳”这一术语。但疲劳研究的奠基人则是德国的a.沃勒,他在19世纪50~60 年代最早得到表征疲劳性能的s-n曲线并提出疲劳极限的概念 。20世纪50年代 p.j.e.福赛思首先观察到疲劳过程中在滑移带内有金属薄片挤出的现象。随后n.汤普孙等人发现这种滑移带不易用电解抛光去掉,称为“驻留滑移带”。后来证明,驻留滑移带常常成为裂纹源。1924年德国的j.v.帕姆格伦在估算滚动轴承寿命时,假设轴承的累积损伤与其转动次数成线性关系。1945年美国m.a.迈因纳明确 提出了 疲 劳 破 坏的线性损伤累积理 论 ,也称为帕 姆 格伦- 迈因纳定律,简称迈因纳定律。此后,断裂力学的进展丰富了传统疲劳理论的内容,促进了疲劳理论的发展。用概率统计方法处理疲劳试验数据,是20世纪20年代开始的。60年代后期 ,概率疲劳分析和设计从电子产品发展到机械产品,于是在航空、航天工业的先导下 ,开始了概率统计理论在疲劳设计中的应用。
循环应力 在工程上引起的疲劳破坏的应力或应变有时呈周期性变化,有时是随机的。在疲劳试验中人们常常把它们简化成等幅应力循环的波形 ,并用一些参数来描述 。图1中 σmax 和 σmin 是循 环应力的最 大和最小 代 数 值 ;γ =σmin/σmax是应力比;σm=(σmax+σmin)/2是平均应力;σa=(σmax-σmin)/2 是应力幅 。当 σm=0时 ,σmax与σmin的绝对值相等而符号相反,γ=-11,称为对称循环应力;当σmin=0时,γ=0称为脉动循环应力。
曲线 s-n曲线中的s为应力(或应变)水平,n为疲劳寿命。s-n曲线是由试验测定的 ,试样采用标准试样或实际零件、构件,在给定应力比γ的前提下进行,根据不同应力水平的试验结果 ,以最大应力σmax或应力幅σa为纵坐标,疲劳寿命n为横坐标绘制s-n曲线(图2) 。当循环应力中的σmax小于某一极限值时,试样可经受无限次应力循环而不产生疲劳破坏,该极限应力值就称为疲劳极限,图2中s-n曲线水平线段对应的纵坐标就是疲劳极限。而左边斜线段上每一点的纵坐标为某一寿命下对应的应力极限值,称为条件疲劳极限。
疲劳特征 零件 、构件的疲劳破坏可分为3个阶段 :①微观裂纹阶段。在循环加载下,由于物体的最高应力通常产生于表面或近表面区,该区存在的驻留滑移带、晶界和夹杂,发展成为严重的应力集中点并首先形成微观裂纹。此后,裂纹沿着与主应力约成45°角的最大剪应力方向扩展,裂纹长度大致在0.05毫米以内,发展成为宏观裂纹。②宏观裂纹扩展阶段。裂纹基本上沿着与主应力垂直的方向扩展。③瞬时断裂阶段。当裂纹扩大到使物体残存截面不足以抵抗外载荷时,物体就会在某一次加载下突然断裂。对应于疲劳破坏的3个阶段 ,在疲劳宏观断口上出现有疲劳源 、疲劳裂纹扩展和瞬时断裂3个区(图3)。疲劳源区通常面积很小,色泽光亮,是两个断裂面对磨造成的;疲劳裂纹扩展区通常比较平整,具有表征间隙加载、应力较大改变或裂纹扩展受阻等使裂纹扩展前沿相继位置的休止线或海滩花样;瞬断区则具有静载断口的形貌,表面呈现较粗糙的颗粒状。扫描和透射电子显微术揭示了疲劳断口的微观特征,可观察到扩展区中每一应力循环所遗留的疲劳辉纹。
疲劳寿命 在循环加载下 ,产生疲劳破坏所需应力或应变的循环次数。对零件、构件出现工程裂纹以前的疲劳寿命称为裂纹形成寿命。工程裂纹指宏观可见的或可检的裂纹 ,其长度无统一规定 ,一般在0.2~1.0毫米范围内 。自工程裂纹扩展至完全断裂的疲劳寿命称为裂纹扩展寿命。总寿命为两者之和。因工程裂纹长度远大于金属晶粒尺寸,故可将裂纹作为物体边界,并将其周围材料视作均匀连续介质,应用断裂力学方法研究裂纹扩展规律 。由于s-n曲线是根据疲劳试验直到试样断裂得出的 ,所以对应于s-n曲线上某一应力水平的疲劳寿命n是总寿命 。在疲劳的整个过程中 ,塑性应变与弹性应变同时存在 。当循环加载的应力水平较低时 ,弹性应变起主导作用;当应力水平逐渐提高,塑性应变达到一定数值时,塑性应变成为疲劳破坏的主导因素。为便于分析研究,常按破坏循环次数的高低将疲劳分为两类:①高循环疲劳(高周疲劳)。作用于零件、构件的应力水平较低 ,破坏循环次数一般高于104~105的疲劳 ,弹簧、传动轴等的疲劳属此类。②低循环疲劳(低周疲劳)。作用于零件、构件的应力水平较高 ,破坏循环次数一般低于104~105的疲劳,如压力容器、燃气轮机零件等的疲劳。实践表明,疲劳寿命分散性较大,因此必须进行统计分析,考虑存活率(即可靠度)的问题 。具有存活率p(如95%、99%、99.9%)的疲劳寿命np的含义是 :母体(总体)中有p的个体的疲劳寿命大于np。而破坏概率等于( 1- p ) 。常规疲劳试验得到的s-n曲线是p=50%的曲线 。对应于各存活率的p的s-n曲线称为p-s-n曲线。
环境影响 某些零件 、构件是在高于或低于室温下工作,或在腐蚀介质中工作,或受载方式不是拉压和弯曲而是接触滚动等,这些不同的环境因素可使零件、构件产生不同的疲劳破坏。最常见的有接触疲劳、高温疲劳、热疲劳和腐蚀疲劳。此外,还有微动磨损疲劳和声疲劳等。①接触疲劳。零件在高接触压应力反复作用下产生的疲劳。经多次应力循环后,零件的工作表面局部区域产生小片或小块金属剥落,形成麻点或凹坑。接触疲劳使零件工作时噪声增加、振幅增大、温度升高、磨损加剧,最后导致零件不能正常工作而失效 。在滚动轴承、齿轮等零件中常发生这种现象。②高温疲劳 。在高温环境下承受循环应力时所产生的疲劳。高温是指大于熔点1/2以上的温度,此时晶界弱化,有时晶界上产生蠕变空位,因此在考虑疲劳的同时必须考虑高温蠕变的影响。高温下金属的s-n曲线没有水平部分 ,一般用 107~108次循环下不出现断裂的最大应力作为高温疲劳极限;载荷频率对高温疲劳极限有明显影响,当频率降低时,高温疲劳极限明显下降。③热疲劳。由温度变化引起的热应力循环作用而产生的疲劳。如涡轮机转子、热轧轧辊和热锻模等,常由于热应力的循环变化而产生热疲劳。④腐蚀疲劳。在腐蚀介质中承受循环应力时所产生的疲劳。如船用螺旋桨、涡轮机叶片 、水轮机转轮等,常产生腐蚀疲劳。腐蚀介质在疲劳过程中能促进裂纹的形成和加快裂纹的扩展。其特点有 :s-n曲线无水平段;加载频率对腐蚀疲劳的影响很大;金属的腐蚀疲劳强度主要是由腐蚀环境的特性而定;断口表面变色等。
发展趋势 飞机、船舶、汽车、动力机械、工程机械 、冶金、石油等机械以及铁路桥梁等的主要零件和构件,大多在循环变化的载荷下工作,疲劳是其主要的失效形式。因此,疲劳理论和疲劳试验对于设计各类承受循环载荷的机械和结构,成为重要的研究内容。疲劳有限寿命设计中进行寿命估算,必须了解材料的疲劳性能,以此作为理论计算的依据 。由于疲劳寿命的长短取决于所承受的循环载荷大小,为此还必须编制出供理论分析和全尺寸疲劳试验用的载荷谱,再根据与各种疲劳相适应的损伤模型估算出疲劳寿命。疲劳理论的工程应用,经历了从无限寿命设计到有限寿命设计,有限寿命设计尚处于完善阶段。发展趋势是:①宏观与微观结合,探讨从位错、滑移、微裂纹、短裂纹、长裂纹到断裂的疲劳全过程 ,寻求寿命估算各阶段统一的物理-力学模型 。②研究不同环境下的疲劳及其寿命估算方法。③概率统计方法在疲劳中的应用,如随机载荷下的可靠性分析方法,以及耐久性设计等。

疲劳
材料承受交变循环应力或应变时所引起的局部结构变化和内部缺陷发展的过程。它使材料的力学性能下降并最终导致龟裂或完全断裂。

㈡ 材料疲劳失效分析的实验方法有哪些

6.疲劳实验方法及疲劳曲线:
原理:用小试样模拟实际机件的应力情况,在疲劳试 验机上系统测量材料的疲劳曲线,从而建立疲劳极 限和疲劳应力判据。
试验设备:最常用的旋转弯曲疲劳试验机 将相同尺寸的疲劳试样,从0.67σ 范围内选择几个不同的最大循环应力σ 别对每个试样进行循环加载试验,测定它们从加载开始到试样断裂所经历的应力循环次数N ,然后将试验数据绘制成σmax -N曲线或 max-lgN曲线,即疲劳曲线。
二、疲劳试样 适用于旋转弯曲疲劳试验机上的光滑试样其尺寸形状如图所示,其直径d可为6mm、7.5mm、 9.5mm。
三、试验程序 将试样装入试验机,牢固夹紧并使其与试验机主轴保持良好同轴。 旋转时,试样自由端上测得的径向跳动量应不大于0.03mm。空载运转,在主轴筒加力部位测得 径向跳动量不应大于0.06mm。加力前必须检定 上述值。装样时切忌接触试验部分表面。 试验速度范围900~10000r/min。同一批试验的试验速度应相同。不得采用引起试样共振的试验 速度。
三、试验程序 试验一直进行到试样失效或达到规定循环次数时终止,试验原则上不得中断。 试样失效标准为肉眼所见疲劳裂纹或完全断裂。试样失效如发生在最大应力部位之外,或断口有 明显缺陷或中途停试发生异常数据,则试验结果 无效。
四、测定条件疲劳极限 应力增量一般为预计条件疲劳极限σ-1 的3%~5%。 试验应在3~5级的应力水平下进行,第一根试样的应力水平应略高于预计的条件疲劳极限。根据上根 试样的试验结果是破坏还是通过,即试样在未达到 指定寿命10 周次之前破坏或通过,决定下一根试样的应力降低或升高,直到完成全部试验。

㈢ 疲劳强度的理论分析

疲劳的机制可以分成三个相互关联的过程:
1. 裂纹产生
2. 裂纹延伸
3. 断裂
FEA应力分析可以预测裂纹的产生。许多其他技术,包括动态非线性有限元分析可以研究与裂纹的延伸相关的应变问题。由于设计工程师最希望从一开始就防止疲劳裂纹的出现,确定材料的疲劳强度。
裂纹开始出现的时间以及裂纹增长到足以导致零部件失效的时间由下面两个主要因素决定:零部件的材料和应力场。材料疲劳测试方法可以追溯到19 世纪,由August Wöhler 第一次系统地提出并进行了疲劳研究。标准实验室测试采用周期性载荷,例如旋转弯曲、悬臂弯曲、轴向推拉以及扭转循环。科学家和工程师将通过此类测试获得的数据绘制到图表上,得出每类应力与导致失效的周期重复次数之间的关系,或称S-N曲线。工程师可以从S-N 曲线中得出在特定周期数下材料可以承受的应力水平。
该曲线分为高周疲劳和低周疲劳两个部分。一般来说,低周疲劳发生在10,000 个周期之内。曲线的形状取决于所测试材料的类型。某些材料,例如低碳钢,在特定应力水平(称为耐疲劳度或疲劳极限)下的曲线比较平缓。不含铁的材料没有耐疲劳度极限。
大体来说,只要在设计中注意应用应力不超过已知的耐疲劳度极限,零部件一般不会在工作中出现失效。但是,耐疲劳度极限的计算不能解决可能导致局部应力集中的问题,即应力水平看起来在正常的“安全”极限以内,但仍可能导致裂纹的问题。
与通过旋转弯曲测试确定的结果相同,疲劳载荷历史可以提供关于平均应力和交替应力的信息。测试显示,裂纹延伸的速度与载荷周期和载荷平均应力的应力比率有关。裂纹仅在张力载荷下才会延伸。因此,即使载荷周期在裂纹区域产生压缩应力,也不会导致更大的损坏。但是,如果平均应力显示整个应力周期都是张力,则整个周期都会导致损坏。
许多工况载荷历史中都会有非零的平均应力。人们发明了三种平均应力修正方法,可以省去必须在不同平均应力下进行疲劳测试的麻烦:
Goodman 方法- 通常适用于脆性材料。
Gerber 方法- 通常适用于韧性材料。
Soderberg 方法- 通常最保守。
这三种方法都只能应用于所有相关联的S-N 曲线都基于完全反转载荷的情况。而且,只有所应用疲劳载荷周期的平均应力与应力范围相比很大时,修正才有意义。实验数据显示,失效判据位于Goodman 曲线和Gerber 曲线之间。这样,就需要一种实用的方法基于这两种方法并使用最保守的结果来计算失效。
疲劳寿命的计算方法
对每个设计进行物理测试明显是不现实的。在多数应用中,疲劳安全寿命设计需要预测零部件的疲劳寿命,从而确定预测的工况载荷和材料。计算机辅助工程(CAE) 程序使用三种主要方法确定总体疲劳寿命。这些方法是:
·应力寿命方法(SN)
这种方法仅基于应力水平,只使用Wöhler 方法。尽管不适用于包含塑性部位的零部件,低周疲劳的精确度也乏善可陈,但这种方法最容易实施,有丰富的数据可供使用,并且在高周疲劳中有良好的效果。
· 应变寿命(EN)
这种方法可以对局部区域的塑性变形进行更详细的分析,非常适合低周疲劳应用。但是,结果存在一些不确性。
· 线性弹性破坏力学(LEFM)
这种方法假设裂缝已经存在并且被检测到,然后根据应力强度预测裂缝的增长。借助计算机代码和定期检查,这种方法对大型结构很实用。由于易于实施并且有大量的材料数据可用,SN 是最常用的方法。
设计人员使用SN 方法计算疲劳寿命
在计算疲劳寿命时,应考虑等幅载荷和变幅载荷。
这种方法假设零部件在恒定的幅度、恒定的平均应力载荷周期下工作。通过使用SN 曲线,设计人员可以快速计算导致零部件发生失效的此类周期数量。而对于零部件需要在多种载荷下工作的情况,则可采用Miner 规则来计算每种载荷情况的损坏结果,并将所有这些损坏结果合并起来获得一个总体的破坏值。
其结果称为“损坏因子”,是一个失效分数值。零部件在D = 1.0 时发生失效,因此,如果D = 0.35,该零部件的寿命已经消耗了35%。这一理论还认为由应力周期导致的损坏与损坏在载荷历史的哪个位置发生无关,并且损坏积累速度与应力水平无关。
这种方法假设零部件在恒定的幅度、恒定的平均应力载荷周期下工作。通过使用SN 曲线,设计人员可以快速计算导致零部件发生失效的此类周期数量。
而对于零部件需要在多种载荷下工作的情况,则可采用Miner 规则来计算每种载荷情况的损坏结果,并将所有这些损坏结果合并起来获得一个总体的破坏值。其结果称为“损坏因子”,是一个失效分数值。零部件在D = 1.0 时发生失效,因此,如果D = 0.35,该零部件的寿命已经消耗了35%。这一理论还认为由应力周期导致的损坏与损坏在载荷历史的哪个位置发生无关,并且损坏积累速度与应力水平无关。
在真实的环境条件下,多数零部件承载的载荷历史是不断变化的,幅度和平均应力都是如此。因此,更为通用和现实的方法需要考虑变幅载荷,在这种情况下,应力尽管随着时间循环反复,但其幅度是变化的,这就有可能将应力分解成载荷“块”。在处理这种类型的载荷时,工程师使用一种称为“雨流法计数”的技术。附录B 讨论如何研究FEA 疲劳结果,它就雨流法计数提供了更多信息。
在通过SN 方法研究疲劳方面,FEA 提供了一些非常优秀的工具,这是因为输入由线弹性应力场组成,并且FEA 能够处理多种载荷情况交互作用的可能情形。如果要计算最坏情况的载荷环境(这是一种典型方法),系统可以提供大量不同的疲劳计算结果,包括寿命周期图、破坏图以及安全系数图。此外,FEA 可以提供较小主要交替应力除以较大主要交替应力的比率的图解(称为双轴性指示图),以及雨流矩阵图。后者是一个3D 直方图,其中的X 和Y 轴代表交替应力和平均应力,Z 轴代表每个箱所计的周期数。

㈣ 如何进行表面应力状态及疲劳寿命分析

ABAQUS是一种有限元素法,用于机械、土木、电子等行业的结构和场分析。它的功能中就有疲劳分析,具体是根据结构和材料的受载情况统计进行生存力分析和疲劳寿命预估。
根据疲劳公式自己计算可以先应用ABAQUS进行20KN载荷应力分析(其中设置了2个分析步15KN和20KN,而且每个分析中设置增量步0.2),ABAQUS完成应力分析后,再输入fe-safe疲劳计算的,请在导入过程中需要选择20KN时的最后1个增量步。这个属于静载或稳态载荷;如果是其他的动态载荷就还要根据情况而定。
如果是要导入其他来计算疲劳寿命,那就要看该的要求了。

㈤ 常用的疲劳分析及寿命预测方法有哪些

㈥ 疲劳试验该怎么

疲劳试验为了精确地估算材料结构的零部件的疲劳寿命,疲劳试验也是有限元仿真分析的重要指标之一。试验方式:试验应力(应变)和循环周次(高周疲劳,低周疲劳,室温疲劳,低温疲劳,高温疲劳,热疲劳,腐蚀疲劳,接触疲劳,微动磨损疲劳等),加载方式(拉压疲劳,弯曲疲劳(旋转弯曲疲劳、三点弯曲疲劳、四点弯曲疲劳、悬臂弯曲疲劳),扭曲疲劳,复合应力疲劳等等),扩展速率试验,S-N曲线的测式,旋转弯曲方法等等。

㈦ ANSYS的疲劳分析方法及应用

推荐:高耀东《ANSYS Workbench18.2机械工程应用实践》8.3 疲劳强度计算

㈧ 疲劳检测怎么检测

疲劳检测怎么检测疲劳试验对于产品寿命评估、失效分析、金属断裂原因分析、事故还原等方面,都具有重要的参考价值。对于一些类似轴承、叶片、齿轮、弹簧等零件,因为需要承受不同载荷应力,所以在对这些产品检测时,疲劳试验可以很好的反应其质量情况。疲劳试验不仅适用金属制品检测,而且对塑料制品检测、橡胶检测也都同样适用。拜恩检测可对金属、橡胶、塑料等各类材料进行疲劳试验,并提供国家认可的资质检测报告。

一、检测范围:

金属材料、橡胶制品、V 带、齿轮、轴类、板材、弹性材料

二、试验种类:

拉伸疲劳、压缩疲劳、高温疲劳、低温疲劳、热疲劳、腐蚀疲劳、轴向疲劳、接触疲劳、高周疲劳、低周疲劳、室温疲劳、微动磨损疲劳、旋转弯曲疲劳

三、检测标准:

GB/T13682‐1992螺纹紧固件轴向载荷疲劳试验方法

GB/T14229‐1993齿轮接触疲劳强度试验方法

GB/T14230‐1993齿轮弯曲疲劳强度试验方法

GB/T4337‐2008 金属材料疲劳试验旋转弯曲方法

GB/T1688‐2008 硫化橡胶伸张疲劳的测定

四、测试仪器:

疲劳试验机、拉力试验机、压力试验机、恒温恒湿试验机、低温试验机

吃货福利来啦!各种美食领券满减,价格也太低了,赶快来买吧

㈨ abaqus中如何使用疲劳分析

ABAQUS是一种有限元素法软件,用于机械、土木、电子等行业的结构和场分析。

它的软件功能中就有疲劳分析,具体是根据结构和材料的受载情况统计进行生存力分析和疲劳寿命预估。

  1. 根据疲劳公式自己计算

    可以先应用ABAQUS软件进行20KN载荷应力分析(其中设置了2个分析步15KN和20KN,而且每个分析中设置增量步0.2),ABAQUS完成应力分析后,再输入fe-safe疲劳计算软件的,请在导入过程中需要选择20KN时的最后1个增量步。

    这个属于静载或稳态载荷;如果是其他的动态载荷就还要根据情况而定。

  2. 如果是要导入其他软件来计算疲劳寿命,那就要看该软件的要求了。



阅读全文

与疲劳寿命分析方法相关的资料

热点内容
lol手游跳fps严重解决方法 浏览:374
塑料薄膜吸水率检测方法 浏览:662
植物中药的鉴别方法 浏览:143
如何练习口才方法 浏览:409
裸色隔离霜的正确使用方法 浏览:771
玻璃水种真假的鉴别方法 浏览:599
识字教学方法幼小衔接 浏览:826
论文类似于swot的分析方法 浏览:964
小脑病变怎样治疗方法 浏览:296
自我检测五官的方法 浏览:758
宫灯图片制作方法 浏览:688
油菜花的种植方法和功效 浏览:682
用什么方法可以让鱼到水面吃食 浏览:702
戴口罩正确方法 浏览:488
iqoo手机网络卡顿严重解决方法 浏览:204
安装障碍物的方法 浏览:332
硬盘在电脑里的使用方法 浏览:957
手机臂带使用方法 浏览:835
橱柜门板测量方法 浏览:159
通气还有哪些方法 浏览:732