导航:首页 > 研究方法 > 典型图像分析方法实验

典型图像分析方法实验

发布时间:2022-07-15 08:29:35

⑴ 基本图像分析

grayscale image---->灰度图像的意思

了解了图像原理之后,我们就介绍分别有哪些图像的种类,而这些图像又以档案的形式储存在硬盘里面,或者传输于网路之上.
关于档案格式的最主要考量就是压缩的方法,我们介绍压缩的分类与应用上的考量.
数位图像的像素 (1/2)
这是一份所谓 320 x 200 的图,它的“宽度”(Width) 有 320 像素 (pixels),“高度” (Height) 有 200 条线 (lines).
先解释像素 (pixel).一张像这个小丑图的数位图像,其实是由一堆小粒小粒的色彩排出来的.
每一小粒色彩代表一个单一的颜色,这些不同的颜色凑在一起,被我们看到,就在脑袋里产生了意义,因而认出来这是一个化了妆的小丑.
每一小粒色彩,用一个,两个,或三个数来纪录,称为一个“像素”.
数位图像的像素 (2/2)
所谓 320 x 200 的图,就是宽有 320 个像素,高有 200条线 的图,想象那些像素排成一个矩形,总共有 64,000 个像素.
230 x 200 的像素矩形太大了,所以我们故意把它缩小成一张 40 x 25 的图.
如果觉得它太小了看不见,可以放大八倍 (宽和高各放大 8 倍) 来看看.
256 色图
缩小的小丑图是一张‘256 色’图,宽有 40 个像素,高有 25 个像素.每个像素用一个介于 1 和 256 之间的数表示.
256 色图
‘256 色’图的像素代表的不是色彩,而是色彩的编号.以这张小丑图为例,它一共只用到 81 种不同的颜色.
灰阶图 (1/2)
现在展示一张灰阶的小丑图.它的宽度是 320,高度是 200,也就是仍然有 64,000 个像素,但是此时是个‘灰阶’图,每个像素就直接纪录那个位置的灰色亮度.
我们可以观察,这张‘灰阶’图的像素数值与‘256 色’图的像素数值相同,电脑只是将像素的数值解释成‘亮度’,就造成了这张图.
灰阶图 (2/2)
‘灰阶’图不需要另外储存色盘,每个像素直接纪录那个位置的灰色亮度.因为电脑知道,譬如说 64 号亮度的 RGB 亮度就是 (64, 64, 64).为了能够列出像素的数值,我们还是只看那张缩小的黑白版小丑图 .
高彩图
所谓‘高彩’图就是同一张图里面可以显示不超过 65,536 种不同的颜色.很显然地,像小丑图这种总共只有 64,000 个像素的图,不太可能用到这麼多不同的颜色.‘高彩’图的每个像素要用两个数表示,每个数都介于 0 和 255 之间.
…..
全彩图
所谓的‘全彩’图就是同一张图里面可以显示所有可能的色彩,也就是 255 x 255 x 255 共约一千六百万色.很显然地,像小丑图这种总共只有 64,000 个像素的图,根本不可能用到这麼多不同的颜色 (每个像素只代表一个颜色).

图像的‘资料量’
所谓图像的‘资料量’就是一张数位图像在记忆体内所占有的空间.
资料量越大的图像,通常在萤幕上看起来越大,色彩也越丰富,但是它占用的记忆体就越多.
视觉上我们认为数位图像有两个维度:宽 (Width) 和高 (Height).
现在要接受一个新的概念:数位图像其实有三个维度:除了宽度和高度之外,还有‘深度’或者‘厚度’.
而数位图像的资料量,就是这三个维度的乘积,也就是体积.
数位图像的深度
决定图像资料量的第三个维度就是选用的色彩丰富程度,术语称作深度 (Depth).
其实深度就是每个像素代表几个数的意思.色彩最单调的就是‘灰阶’图,它的深度是 1.
比‘灰阶’图多一点点色彩的是‘256 色’图,它的深度理论上也是 1,因为每个像素只代表一个数:色盘上的编号.
但是因为含有色盘的关系,经验上我们就说其深度是 1.01.这是一个我不打算讲清楚细节的地方.
‘高彩’图的深度是 2,‘全彩’图的深度是 3.
图像的资料量
一张数位图像的资料量,就是上述宽,高,深所形成的立方体体积,而单位是 Byte (‘字符’或‘位元组’).电脑的术语中,称 1024 Byte 为一个‘千’Byte,记做 KB (kilo-byte);又称 1024 个 KB,或者大约一百万个 Byte 为 MB (mega-byte).
以一张 320 x 200 的‘灰阶’图为例,其资料量就是 320 * 200 * 1 = 64,000 byte 也就是 62.5KB.
以一张 320 x 200 的‘全彩’图为例,其资料量就是 320 * 200 * 3 = 192000 byte 也就是 187.5KB.
档案与压缩
在这张图像,软体和档案之间的关系示意图上,我们看到电脑以‘档案’的形式储存数位图像于磁盘机内,或者传输数位图像于网际网路上.
负责储存或传输的是作业系统 (OS),例如 MS-Windows 98, ME, XP 之类的.
但是负责展现图像的软体,例如 MS-IE,档案总管,ACDsee 或 PhotoImpact 之类的,却要负责把档案内容转换成像素的数值,若是遇到‘256 色’图,还要处理色盘.
压缩比
档案通常不会一五一十地储存像素 (和色盘) 所对应的数值,而是储存经过压缩的像素数值.
压缩的过程其实是按照一种数学函数,把像素的数值按照函数规则映射到另一种数值.
我们使用电脑,应该已经知道每个档案的性质之中,有所谓的‘档案大小’,也是用 Byte 作单位来计量.
压缩之后的数位图像通常会变得比较小,也就是说档案大小应该会小于图像的资料量.变小的比率就是‘压缩比’.
无失真(Lossless)压缩与破坏性(Losssy)压缩 (1/2)
无失真压缩与破坏性压缩 (2/2)
图片格式的压缩法 (1/2)
图片格式的压缩法 (2/2)
图像的呈现
在这个可爱的动画里面,我们提示:是监视器‘跑去拿’VRAM 里面的指示,而不是电脑将指示从 VRAM ‘送给’监视器.监视器每隔一小段时间就去电脑里面拿 VRAM 里面的指示,然后按照只是在萤幕上扫射各种不同的颜色.因为它扫得很快,我们的眼睛因为视觉暂留的关系,就觉得那个画面是静止的.
像素和光点
像素和光点之间的对应,正常的时候是 1 对 1,也就是一个像素就对应一粒光点.让我们重温缩小版的小丑图,当像素与光点是正常地 1:1 的时候,实在是很小,看不见.如果有必要的话,软体可以让一个像素对应更多粒光点,例如 1:64.这就是‘强迫放大’一张图像的效果.虽然图像的画面是放大了,不过一点也没有变得比较清楚.
所谓监视器的‘分辨率’就是每列有几个光点,一共有几列光点.例如 800 x 600 的分辨率就是在监视器上,每列有 800 个光点,一共 600 列.
影像媒体
影像原理
影像格式
数位图像导论
图片JPEG影像类型讨论
图形压缩,解压缩探讨JPEG 原理
图片JPEG影像类型讨论 (1/3)
目前影像压缩的方法有很多种,基本上可以分为“无失真”及“有失真”两类.例如我们常见的PCX ,GIF ,TIFF ,及TGA 等格式就是属于无失真的影像压缩格式.
它们利用传统档案的压缩原理及技术来处理影像压缩,所以压缩前的原始影像与压缩后还原的结果丝毫不差.
至于我们所熟知的 JPEG (Joint Photographic Coding Expert Group) 则是属于有失真的影像压缩格式.
图片JPEG影像类型讨论 (2/3)
JPEG 由国际标准组织(International Organization for Standardization ,简称ISO) 和国际电话电报谘询委员会( International Telegraph and Telephone Consultative Committee ,简称CCITT) 所建立的一个数位影像压缩标准,主要是用于静态影像压缩方面.
JPEC 采用可失真(Lossy) 编码法的概念,利用数位余弦转换法(Discrete Cosine Transform,简称DCT) 将影像资料中较不重要的部份去除,仅保留重要的资讯,以达到高压缩率的目的.
虽然被JPEC 处理后的影像会有失真的现象,但由于JPEG 的失真比例可以利用参数来加以控制;一般而言,当压缩率( 即压缩过后的体积除以原有资料量的结果) 在5% ~15% 之间时,JPEC 依然能保证其适当的影像品质,这是一般无失真压缩法所作不到的.
图片JPEG影像类型讨论 (3/3)
我们将以下图的阳明山风景为例,利用不同的JPEC 压缩参数(PHOTOIMPACT 5.0 渐进式 1024 X 768)来压缩它,其压缩的结果如图二和图三.图二的影像品质与原图十分接近,而压缩率已达65% ;至于图三,其压缩率为25% ,压缩效果良好,但此时影像品质已经有明显的失真了.
JPEG100 原图100%_ 671K
JPEG65 压缩65%_ 341K
JPEG25 压缩25% 261K
JPEG原理 (1/3)
JPEG所根据的原理是:人的眼睛对影像中亮度的变化最为敏感,远远超过对颜色变化的感觉,所以,JPEG储存的,并不是一点一点的颜色,而是亮度及颜色的"变化率".借着变化速率的曲线的还原,来重现大部分的影像,尤其是影像的"感觉".
对大部分JPEG型态的压缩来说,第一步要先将RGB转换成亮度与色度,最常见的是CCIR601格式,也就是所谓Y,Cb,,Cr格式,Y代表亮度,Cb代表蓝色色度,Cr代表红色色度( 也可用U代表Cb, V代表Cr,即所谓YUV格式),转换公式如下:
Y = 0.299R + 0.587G + 0.114B
Cb = 0.1687R – 0.3313G + 0.5B
Cr = 0.5R – 0.4187G – 0.0813B
这是一个不会失真的转换,Y,Cb,Cr还是可以完全转换回R,G,B的.
JPEG原理 (2/3)
由于人眼对亮度远比对色度敏感,所以在压缩和重建影像时,可以用份量较多的Y,而减少Cb 及Cr的份量.
转换后的数值,仍然是一个图点一个图点的格式.必须将相邻近的点合并,透过DCT(Discrete Cosine transform)转换,将点资料转换成"变化速率"的曲线资料,再将这曲线数位化(这就就是造成JPEG失真所在的地方) .
数位化时所用的系数,决定了资料流失量的多寡,及影像品质的好坏,这些被数位化后的资料,还可以再用Huffman或其他编码方式,予以压缩,存成JPEG档案.还原的步骤刚好逆其道而行.
首先,将JPEG资料解压缩,变成变化速率数位曲线,然后使用逆向的DCT转换,重建影像.原本一些低阶的位元,可能无法重现,都用0加以补足.
JPEG原理 (3/3)
由于Y,Cb,Cr的重要性不同,JPEG允许三者各自赋予不同的份量.例如:以一个2x2点矩阵(共4个图点)来说,Y值最好有4个(共有4个图点),但Cb,Cr各自只记录一个(平均值),这样一来,原本在RGB模式,需要4x3=12 bytes的资料,现在只需要4+1+1=6 bytes,无形中节省了50%的空间,但影响影像品质并没有太多.
致于DCT,其实是有点类似傅立叶转换,将原本属于振幅强度的资料阵列,转换成强度变化频率的资料阵列.
JPEG使用线性数位化,也就是每一个DCT转换值,都被一个不同的数位化系数去除,再四拾五入到一个整数,以储存起来.在这个过程中,变化率阵列的每一个元素,将会视其频率大小,除以一个不同的系数.
对人眼来说,比较缓慢的变化,会比快速变化更被注意.这个过程会把资料的长度大幅降低.所以变化率越大的元素,压缩比越大.这也就是JPEG对于不规则影像( 如电视画面,照片等)比较有利的地方.
影像媒体
影像原理
影像格式
数位图像导论
图片JPEG影像类型讨论
图形压缩,解压缩探讨JPEG 原理
图形压缩,解压缩探讨JPEG 原理
JPEG是一种对彩色或灰阶之类连续色调图形作压缩和解压缩的标准.
这个标准是由ISO/IEC JTC1/SC29 WG10所订定.JPEG可应用在许多如研讨画图片,彩色电传,影像资料库,桌上出版系统,多媒体及医疗等的静态影像的压缩之上.
JPEG最基本的概念就是将影像的一个区块从空间域转换为频率域.一般而言影像高频部份的量会比低频部份要小得多.
而由于人们的眼睛对空间高频的部份较不敏感,因此高频部份就可以用较大量化处理的方式来产生较为粗略的影像来表示,由于较粗略的影像需要较少的位元,于是可以大幅度地减少要储存或通讯的资讯量,而缩减后的资讯影像也的确可以为人们的视觉感官所接受.
影像压缩原理
资料的压缩方法可分为无损压缩 (lossless compression) 与略损压缩(lossy compression)两类.
对于资料本身在压缩后再还原必须保持原貌的需求上,必须使用无损压缩,无损压缩有不得失真的限制,因此压缩效果有限.对于文数字,程式等资料型态适用.
影像资料的一个特性是空间冗余(Spatial Rendancy).
一般来说,在同一张画面上必有一些共通特性(Correlation),也许是色彩上的,也许是几何上的,或是其它特征值得到的.
所谓的空间冗余去除,就是要识别出画面中重要的元素,并移除重复且较无影响的元素的动作.
影像压缩方法概说 (1/2)
首先介绍一种基本的压缩方法: 称为变动长度编码法(Run Length Encoding,简称RLE).
其原理是把资料中重复多次的内容,记录其内容细节与出现约次数.例如: ABCDEABCDEABCDEABODE,我们可记录ABCDE出现4次,两项资讯,是不是比直接记录重复的ABCDE要精简呢
变动长度编码法的算法相当简单,除了可以直接应用外也可以与其他压缩方法搭配.
但变动长度编码法不一定能达到压缩的效果,有时候遇到重复性很低的资料,压过的大小可能不减反增.
影像压缩方法概说 (2/2)
In order to understand the correlation between pixels in an image and hence decide which data to eliminate mathematical transforms are used.
目前使用在影像压缩的最普及数学转换为离散余弦转换 (DCT,Discrete Cosine Transform) .
DCT是用来分析影像资料中较不重要的部分,然后用量化(Quantization)方法将其去除,仅保留重要资讯,来达到高压缩的效果,
而其失真比例可以利用量化参数来加以控制.此方法用于JPEG格式之影像,当压缩比在5% ~ 15%间时,依然能保证其适当的影像品质.此一压缩方法的发展,让影像媒体的储存与应用更加地方便.
JPEG Compression with Different Quality
Original
QF=20
QF=50
QF=30
QF=80
QF=10
原图与压缩图比较
原图与压缩图比较 cont'd
原图与压缩图比较 cont'd
原图与压缩图比较 cont'd
原图与压缩图比较 cont'd
原图与压缩图比较 cont'd
Subjective View of Titanic
Baseline JPEG Encoding
Convert to
8x8 block
Subtract
128 in pixel
DCT
Transform
Quantize
Zigzag/
RLC
Entropy
Encode
DPCM
Encode
DC coefficient
AC Range: -1023 ~ 1023
DC Range: 0 ~ 2048
JPEG 编码及解码器
8X8
像素
区块
FDCT
编码资料流
JPEG
语法
产生器
无失真压缩
霍夫曼编码
失真压缩
量化处理
斜向
扫描
量化表
霍夫曼
编码表
FDCT:Forward Discrete Transform(正离散余弦转换)
8X8
像素
区块
IDCT
编码资料流
JPEG
语法
产生器
无失真压缩
霍夫曼编码
反量化
斜向
扫描
量化表
霍夫曼
编码表
IDCT:Inverse Discrete Transform(逆离散余弦转换)
JPEG编码方式
为了因应不同的通讯及储存状况下之应用,JPEG提供二四种不同的编码方式:
1,循序模式 (Sequential mode)
2,渐进模式(Progressive mode)
3,层模式(Hierarchical mode)
4,无失真模式(Losslessmode)
1,循序模式(Sequential mode)
循序模式编码的方式将影像以扫瞄方式由左至右由上而下作编码,这个循序模式的编码架构简单而有效率,对大部份的应用程式是相当合宜的,架构仅对资料作单一次处理的方式作影像编码的工作,也就是所谓的循序编码的模式了.这种方式对每个输入资料提供8位元的分辨率.
Sequential Coding Example
Sequential Coding Example
2,渐进模式(Progressive mode)
影像的建立无论是采取从模糊的低频影像到清晰的高频影像 (即频谱选择 方式),或是自最大有效位元到最小有效位元的建立方式(即连续近似法), 渐进模式的编码都对影像作多重扫描来作处理.以频谱选择方式为例,影 像以DCT转换到频率域,而一些频宽可立即从DCT系数得到,由于只执行一次DCT,因此在这样的方式下只有一种的空间分辨率.渐进模式对于在频宽受到限制的频道上作影像传输相当有用,使用者可以先看到粗略的影像,再决定是否需要最终的影像.
渐进模式解压缩后影像呈现的方式,先出现模糊的低频影像,而后再显现清晰的高频影像.这种的编码方式满足了许多应用程式渐进呈现显示,算术编码以及对分辨率 (如12位元)的较高需求,算术编码法提供了比Huffman编码法有5-10%更好的压缩.
另外此模式也对循序编码和八位元的分辨率提供了支援.
Progressive Coding Example
Progressive Coding Example
3,阶层模式(Hierarchical mode)
阶层模式的编码方式乃是将影像以低空间分辨率的影像先作编码,再以此低分辨率影像为基础对较高分辨率影像与低分辨率影像问的差异作编码以得到较高分辨率的编码影像.
相同一个影像可以以阶层模式作好几种不同分辨率的编码,阶层模式可以同时满足各种具有不同容量的设备上,使得即使低价的设备也可以将此一多分辨率的影像作解码后得到其所能达到的最佳品质.
相较之下.渐进模式只能采用单一分辨率作影像的重建与显现,阶层模式的确为各种不同的设备提供了更佳的强性与分辨率.
Hierarchical Coding Example
4,无失真模式 (Lossless Mode)
所谓的无失真表示了此模式可以将影像原原本本地将影像还原重建回来.
为了重建时能得到和原来完全一样的影像,在无失真模式下并没有使用DCT,也因此无失真模式的压缩率比使用DCT作压缩处理的失真方式要低得多.
这种模式一般只用在一些如重要的医疗影像等对影像有无失真需求的场合之中,而各个像素的数值从二位元到十六位元都可以.
另外这种的处理模式对循序编码也提供支援,使用者可选择Huffman编码或算术编码的方式作处理.
Lossless Coding
Predictor
Entropy Encoder
Huffman
Table
Source Image
Compressed Data
Lossless encoder
亮度与色度 (1/2)
虽然JPEG并未对色彩空间作规划,但大部份的JPEG应用程式都不用RGB的表示方式.而以YCbCr来表示;另外,也由于人的视力系统对色度的敏锐度比较不高 .
因此以 YCbCr 色度的方式来表示可以再做一次作取样(Subsampling) 来减低资讯量,这也是普遍使用YCbCr.另一个重要的理由.如下图所示的.
4:4:4格式代表 YCbCr 原来完整的资讯.而色度表示法可以再次取样以4:2:2或4:2:0格式来表达;4:2:2格式将原本的资讯旦减少为三分之二.
而4:2:0格式则可以将资讯三减少为一半.虽然色度的资讯量减少了.但对人的视觉神经而言却仅仅感受到微小的差别而已.
亮度与色度 (2/2)
离散余弦转换
为了说明执行离散余弦转换 (DCT: Discrete Cosine Transform)的影响,我们将以自一张图取下的一个小区块 (8X8像素)的亮度资料,并将之转换成空间频率域,而后再自每个像素值中减去128以期每个像素都可以符合在DCT算法中的8位元运算范围.经过转换后的二维 (2D)系数如下所示,这个2D频率域的横轴以fx表示而纵轴以fy来表示;左上角代表DC的系数值 -80,低频部份包含了区块的大部份能量.而对人眼较不敏感的高频部份,则通常含有较低的能量.
0
0
0
-2
-4
0
8
0
-2
-2
0
0
0
6
0
12
0
0
-2
0
-4
6
8
-2
0
-2
4
10
-6
-2
0
8
-2
4
4
-4
-12
0
-4
10
2
0
0
0
12
8
-8
24
0
-2
-2
2
6
-6
4
-80
量化 (1/2)
以下所列为 JPEG所建议的量化(Quantization)矩阵,以期能对每秒 30个 720X576像素画面的 CCIR-601 标准作影像的处理与显示.
这个矩阵的目的是在对亮度(Luminance)是作量化处理,至于色度(Chrominance)系数则还有另一个矩阵做处理.
99
103
100
112
98
95
92
72
101
120
121
103
87
78
64
49
92
113
104
81
64
55
35
24
77
103
109
68
56
37
22
18
62
80
87
51
29
22
17
14
56
69
57
40
24
16
13
14
55
60
58
26
19
14
12
12
61
51
40
24
16
10
11
16
量化 (2/2)
在亮度系数的量化方面,每个 2D DCT 系数除以相对的量化矩阵的值,在四舍五入后得到如下的量化后 DCT 系数:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
-1
0
0
1
0
0
0
0
1
1
-1
2
0
0
0
0
0
0
0
-5
举例来说,DC系数 -80除以其所相对应值16后得到量化值 -5.注意量化后区块高频部份出现许多零值,代表人类视觉系统对高频部份并不敏感.由于四舍五入的部份并不能在解码时重现,因此这个步骤将是个失真的过程.
斜向扫描 (Zigzag Scanning) (1/2)
区块在量化之后,只有低频的部份有非零值,为了能进一步地减少储存空间与通讯容量的大小.
尽可能地将零值放在一起,使得处理时能以几个零来表示而非个别的处理每个零.
因此运用如下图的方式做斜向扫描 (zigzag scan),这种斜向扫描的扫描线乃是沿着空间频率大小增加的方向作扫描的.
使得许多的零可以被串接在一起,达到原来的期望.
斜向扫描(2/2)
对量化后系数作斜向扫描的情形,斜向扫描仅针对AC系数部份作处理.
也就是跳过左上角DC系数的部份,至于DC系数的部分则另行以下图的方式与其所相邻的区块作扫描.
字流长度与霍夫曼编码法
扫描完成后,接下来的工作便运用字流长度 (Run length)与霍夫曼(Huffman)编码法混用的方式,以期使得位元的数量能够达到最佳化的目的.首先自斜向扫描处理取得序列的AC系数,如上例得到以下数列:0,2,1,-1,0,0,1,0,1,1,0,0,1,0,0,0,-1,0,0,-1,..,0,而后字流长度或称为变动长度(Variable length)编码对这个序列作编码以更进一步地降低所需的位元数,编码的数值所得到的是由零值的数目按着非零值的数所构成,而得到如下的编码序列格式:
(字流中零值的数目,下个非零值的数)
因此,如上面的例子就可以编码成:(1,2) ,(0,1) , (0,-1) , (2,1) , (1,1) , (0,1),(0,1),(2,1),(3,-1),End of Block (EOB) 来表示;而后再以霍夫曼编码减少为了要代表字流长度编码的位元数.
霍夫曼编码是依统计所推论出来让最常用的码以最少的位元数来表示,JPEG为亮度与色度的DC及AC的霍夫曼编码提供了一个表格以为处理之需;另外在作阶层模式或无失真模式编码时,也可借以算术编码表的运用来取代霍夫曼编码表.

⑵ 图像观察法

图像观察法是珠宝玉石材料无损检测中使用最广泛的方法。常用的仪器是各类放大镜,宝石显微镜(倍率为45~75,带暗场、明场等照明功能),偏光显微镜以及其他低倍率、功能单一的显微镜,超景深显微镜等。

(一)宝石显微镜

宝石显微镜是用来观测宝石表面及内部特征最常用的仪器,对彩色宝石产地特征的观察和信息采集具有最重要意义。

宝石显微镜主要由以下几个部件组成:

(1)光学系统(透镜系统),包括目镜、物镜等。

(2)照明系统,包括底光源、顶光源、光量强度调节按钮等。

(3)机械系统,包括支架、宝石夹、焦距调节旋钮等。

图2-1为直立式宝石显微镜的原理及结构图。

图2-8 DiamondViewTM下可见红宝石内的生长条带和裂隙(10×)

DiamondViewTM在使用时可将具光滑表面的样品置于紫外光下,拍摄并记录其紫外荧光图样。不同品种的宝石具有不同的发光特征,不同产地的同一品种宝石其荧光特性(如荧光强度)也存在差异。对于钻石而言,可将其荧光图像直接与DiamondViewTM软件中存有的各种天然和合成钻石的紫外荧光图样进行对比,从而得出结论。

⑶ 图像分析的分析过程

如图为一个分级的图像分析过程的模型。图像分析基本上有四个过程。①传感器输入:把实际物景转换为适合计算机处理的表达形式,对于三维物景也是把它转换成二维平面图像进行处理和分析(见图像表示)。②分割:从物景图像中分解出物体和它的组成部分(见图像分割)。组成部分又由图像基元构成。把物景分解成这样一种分级构造,需要应用关于物景中对象的知识。一般可以把分割看成是一个决策过程,它的算法可分为像点技术和区域技术两类。像点技术是用阈值方法对各个像点进行分类,例如通过像点灰度和阈值的比较求出文字图像中的笔划。区域技术是利用纹理、局部地区灰度对比度等特征检出边界、线条、区域等,并用区域生长、合并、分解等技术求出图像的各个组成成分。此外,为了进一步考察图像整体在分割中的作用,还研究出松弛技术等方法。③识别:对图像中分割出来的物体给以相应的名称,如自然物景中的道路、桥梁、建筑物或工业自动装配线上的各种机器零件等。一般可以根据形状和灰度信息用决策理论和结构方法进行分类,也可以构造一系列已知物体的图像模型,把要识别的对象与各个图像模型进行匹配和比较。④解释:用启发式方法或人机交互技术结合识别方法建立物景的分级构造,说明物景中有些什么物体,物体之间存在什么关系。在三维物景的情况下,可以利用物景的各种已知信息和物景中各个对象相互间的制约关系的知识。例如,从二维图像中的灰度阴影、纹理变化、表面轮廓线形状等推断出三维物景的表面走向;也可根据测距资料,或从几个不同角度的二维图像进行景深的计算,得出三维物景的描述和解释。

⑷ 图像处理的图像分析

从图像中抽取某些有用的度量、数据或信息。目的是得到某种数值结果,而不是产生另一个图像。图像分析的内容和模式识别、人工智能的研究领域有交叉,但图像分析与典型的模式识别有所区别。图像分析不限于把图像中的特定区域按固定数目的类别加以分类,它主要是提供关于被分析图像的一种描述。为此,既要利用模式识别技术,又要利用关于图像内容的知识库,即人工智能中关于知识表达方面的内容。图像分析需要用图像分割方法抽取出图像的特征,然后对图像进行符号化的描述。这种描述不仅能对图像中是否存在某一特定对象作出回答,还能对图像内容作出详细描述。
图像处理的各个内容是互相有联系的。一个实用的图像处理系统往往结合应用几种图像处理技术才能得到所需要的结果。图像数字化是将一个图像变换为适合计算机处理的形式的第一步。图像编码技术可用以传输和存储图像。图像增强和复原可以是图像处理的最后目的,也可以是为进一步的处理作准备。通过图像分割得出的图像特征可以作为最后结果,也可以作为下一步图像分析的基础。
图像匹配、描述和识别对图像进行比较和配准,通过分制提取图像的特征及相互关系,得到图像符号化的描述,再把它同模型比较,以确定其分类。图像匹配试图建立两张图片之间的几何对应关系,度量其类似或不同的程度。匹配用于图片之间或图片与地图之间的配准,例如检测不同时间所拍图片之间景物的变化,找出运动物体的轨迹。
从图像中抽取某些有用的度量、数据或信息称为图像分析。图像分析的基本步骤是把图像分割成一些互不重叠的区域,每一区域是像素的一个连续集,度量它们的性质和关系,最后把得到的图像关系结构和描述景物分类的模型进行比较,以确定其类型。识别或分类的基础是图像的相似度。一种简单的相似度可用区域特征空间中的距离来定义。另一种基于像素值的相似度量是图像函数的相关性。最后一种定义在关系结构上的相似度称为结构相似度。
以图片分析和理解为目的的分割、描述和识别将用于各种自动化的系统,如字符和图形识别、用机器人进行产品的装配和检验、自动军事目标识别和跟踪、指纹识别、X光照片和血样的自动处理等。在这类应用中,往往需综合应用模式识别和计算机视觉等技术,图像处理更多的是作为前置处理而出现的。
多媒体应用的掀起,对图像压缩技术的应用起了很大的推动作用。图像,包括录像带一类动态图像将转为数字图像,并和文字、声音、图形一起存储在计算机内,显示在计算机的屏幕上。它的应用将扩展到教育、培训和娱乐等新的领域。

⑸ 比较列表法和图像法这两种分析实验数据的方法,你有什么体会

图像法最能体现出大致动向和趋势,列表法可以直观的看出问题本质。

⑹ 图像处理的常用方法有哪几个

1、图像变换:


由于图像阵列比较大,如果直接在空间域中进行图像处理,这样涉及的计算量会比较大。因此,我们一般采用各种图像变换的方法,如沃尔什变换、傅立叶变换、离散余弦变换等一些间接处理技术,将空间域的处理转变为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。


2、图像编码压缩:


图像编码压缩技术能够减少描述图像的数据量,从而可以节省图像传输、处理时间和减少所占用的存储器容量。图像编码压缩能够在不失真的基础上获得,同时也可以在允许的失真条件下开始。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。


3、图像增强和复原:


图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。


4、图像分割:


图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。


关于图像处理的常用方法,青藤小编就和您分享到这里了。如果您对图片处理、网站设计等有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于平面设计的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑺ 常用的实验数据分析方法有哪些

1、聚类分析


聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。


2、因子分析


因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反复法。


3、相关分析


相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。


4、对应分析


对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。


5、回归分析


研究一个随机变量Y对另一个(X)或一组(X1,X2,„,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

⑻ 什么叫做图像分析,具体由哪些技术

对图象进行分析将一复杂的图象分解成简单图象
有平行四边形法则
隔离分析法等

⑼ 数字图像处理与分析方法有哪些

数字图像处理主要研究的内容有以下几个方面:
1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。
4) 图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5) 图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

阅读全文

与典型图像分析方法实验相关的资料

热点内容
绩效考核的内容和方法有哪些 浏览:17
最简单的技术升压方法 浏览:523
民航商业方法类知识产权有哪些 浏览:882
bbs的使用方法 浏览:980
mac版优酷下载的视频在哪里设置方法 浏览:361
苹果7扬声器哪里设置方法 浏览:197
河北美术计算方法有哪些 浏览:816
新风管风量计算方法 浏览:427
电灯遥控器电池安装方法 浏览:600
金珠的检测方法 浏览:328
水波的计算方法 浏览:591
木耳怎么保存方法 浏览:650
论文常见的问题以及解决方法 浏览:73
拔自己的牙有什么方法 浏览:129
电脑裁线机操作方法 浏览:522
水泵叶轮外圆磨损的修理方法如何 浏览:97
文竹的养殖方法大全图片 浏览:29
hiv快速检测方法及应用 浏览:397
教学设计的方法和技巧初中美术 浏览:201
单腿独立站不稳怎么破方法来了 浏览:590