⑴ 电子衍射的方法
1、如表面科学中的低能电子衍射(LEED),主要应用于高取向晶体表面晶格的研究,比如畸变,吸附。
LEED结构也应用在透射电子显微镜(TEM)中,利用聚焦到很小光斑的电子束对纳米结构中的局域有序做结构探测。
LEED只能够作晶格类型分析,不能进行元素分析。
2、反射式高能电子衍射(RHEED),主要应用于分子束外延等设备的原位监测,能够很好的反映表面晶格的平整度,观测材料生长中的衍射强度及位置的振荡。
3、电子显微镜附件,主要是场发射扫描电子显微镜(FESEM),一般属于附件,称选区电子衍射(SAD),可以利用质能选择器对反射电子作元素分析,能够分析很小的区域元素组成,但结果较为粗糙。
电子衍射的原理可以参考XRD,观测到的衍射花纹都是表面晶格的倒易格点,可能是一套,也可能是几套。
一般,除了纳米材料研究中在电镜用电子衍射中常将衍射花纹作为晶格类型的佐证外,常规的LEED和RHEED并不作体材料三维晶格研究,而只用于表面晶格的判定,因为电子衍射一般只能反映晶格的二维表面结构,而不同晶体结构的晶体之间,它们的某一表面取向上它的对称性及衍射斑点可能会完全一致。
电子衍射一般只用于测试二维晶体结构,无法简单作三维体晶格判定,更无法单独作元素判定。
所以你所说的ED测定晶格的说法是要注意的,ED很少或几乎没有单独研究三维晶体结构。
电子衍射结构其实很简单,简单讲就三个部件:
1、灯丝,用于产生电子
2、加速电压,
⑴
电子加速电压
(电压大小要单独可控)
⑵
xy平面内的转向电压
3、荧光屏,注意导电接地。
此外电子衍射还需要有一个超高真空腔体作为设备的基础;
还要有一个位置可调的多维样品架(样品台)系统;
如果需要做衍射斑点位置亮度分析,还要有CCD图像采集系统。
⑵ 分别从原理、衍射特点及应用方面比较X射线衍射和透射电镜中的电子衍射在材料结构分析中的异同点。
简单的说是这样:
原理一样,都是衍射;都具有倒易属性,可以用尔瓦尔德作图法形象的解释衍射花样的形成原理;
衍射路径不同,所以衍射花样不同;
电镜中衍射误差大于X射线。但电镜可以实现形貌与结构的同步分析。
⑶ 在电子衍射实验中若考虑相对论效应,则会对实验结果有什么影响
你好, 电子衍射实验是曾荣获诺贝尔奖金的重大近代物理实验之一, 也是现代分析测试技术中,分析物质结构,特别是分析表面结构最重要的方法之一。现代晶体生长过程中, 用电子衍射方法进行监控, 也十分普遍。1927年Davsso和Germer首次实验验证了 De Broglie 关于微观粒子具有波粒二象性的理论假说,奠定了现代量子物理学的实验基础。本实验主要用于多晶体的电子衍射现象,测量运动电子的波长;验证德布罗意关系。
中文名:电子衍射实验
荣誉:荣获诺贝尔奖金
实验目的:验证电子具有波动性的假设
实验仪器:电子衍射,真空机组
分享
实验目的
验证电子具有波动性的假设;
了解电子衍射和电子衍射实验对物理学发展的意义;
了解电子衍射在研究晶体结构中的应用;
实验仪器
电子衍射,真空机组,复合真空计,数码相机,微机
实验原理
电子的波粒二象性
波在传播过程中遇到障碍物时会绕过障碍物继续传播,在经典物理学中称为波的衍射,光在传播过程表现出波的衍射性,光还表现出干涉和偏振现象,表明光有波动性;光电效应揭示光与物质相互作用时表现出粒子性,其能量有一个不能连续分割的最小单元,即普朗克1900年首先作为一个基本假设提出来的普朗克关系
E为光子的能量,v为光的频率,h为普朗克常数,光具有波粒二象性。电子在与电磁场相互作用时表现为粒子性,在另一些相互作用过程中是否会表现出波动性?德布罗意从光的波粒二象性得到启发,在1923-1924年间提出电子具有波粒二象性的假设,
E为电子的能量,为电子的动量,为平面波的圆频率,为平面波的波矢量,为约化普朗克常数;波矢量的大小与波长λ的关系为,称为德布罗意关系。电子具有波粒二象性的假设,拉开了量子力学革命的序幕。
电子具有波动性假设的实验验证是电子的晶体衍射实验。电子被电场加速后,电子的动能等于电子的电荷乘加速电压,即考虑到高速运动的相对论效应,电子的动量由德布罗意关系得真空中的光速 ,电子的静止质量 ,普朗克常数 ,当电子所受的加速电压为V伏特,则电子的动能 ,电子的德布罗意波长,(1)
加速电压为100伏特,电子的德布罗意波长为 。要观测到电子波通过光栅的衍射花样,光栅的光栅常数要做到 的数量级,这是不可能的。晶体中的原子规则排列起来构成晶格,晶格间距在 的数量级,要观测电子波的衍射,可用晶体的晶格作为光栅。1927年戴维孙_革末用单晶体做实验,汤姆逊用多晶体做实验,均发现了电子在晶体上的衍射,实验验证了电子具有波动性的假设。
普朗克因为发现了能量子获得1918年诺贝尔物理学奖;德布罗意提出电子具有波粒二象性的假设。导致薛定谔波动方程的建立,而获得1929年诺贝尔物理学奖;戴维孙和汤姆逊因发现了电子在晶体上的衍射获得1937年诺贝尔物理学奖。
由于电子具有波粒二象性,其德布意波长可在原子尺寸的数量级以下,而且电子束可以用电场或磁场来聚焦,用电子束和电子透镜取代光束和光学透镜,发展起分辨本领比光学显微镜高得多的电子显微镜。
希望能帮到你。
⑷ 有哪几种电子衍射,说明各自的操作特点和基本应用
1)电子显微镜中主要有SAED选区电子衍射、μ-衍射、纳米衍射、CBED会聚束衍射、EBSD背散射电子衍射五种电子衍射。 2)操作特点: ①SAED选区电子衍射采用TEM模式,利用μ级平行入射电子束照射试样,通过物镜像平面处的选区光阑选取特定区域做电子衍射,得到与选择区域对应的电子衍射花样。 ②μ-衍射采用STEM模式,利用μ级针状入射电子束照射试样的固定区域,无需光阑选择成像区域,因此不存在选区衍射误差。 ③纳米衍射与μ-衍射类似,主要差别在于纳米衍射的入射电子束为纳米级,体积更细小,因此能够对试样的更微小区域进行分析。 ④CBED会聚束衍射采用STEM模式,入射束由平行束变为锥状会聚束,并且后焦面处得到扩展的衍射斑点(圆盘状),盘的大小与入射束的会聚角有关。因此伴随着会聚角的变化,能够获得散射电子的信息,实验过程中要避免透射盘与衍射盘相交。 ⑤EBSD背散射电子衍射是入射束打到试样上形成的背散射电子发生衍射,形成衍射锥,最终获得EBSD衍射花样。
⑸ 电子衍射分析
电子束不是电磁波,而是物质波,但是它与X射线的性质类似,波长接近。1927年C.J.Davisson&L.H.Germer在电子显微镜问世前就发现了电子衍射现象,其原理与X射线衍射的原理基本相同,所获得的衍射花样也很相似。电子衍射产生的花样大多呈规则排列的点状(单晶),有时也呈同心圆状(多晶)。电子衍射与X射线衍射的区别是:①由于电子束波长更短,在同一张图像上电子衍射所得到的信息比X射线衍射的信息多;②电子衍射的强度要比X射线衍射的强度大得多,适用于对晶体微粒、表面和薄膜进行分析。现在,在透射电镜中插入一选区光阑便能获得单晶的衍射花样(请参阅本章第二节)。
电子背散射衍射(Electron Backscatter Diffraction,缩写为EBSD)是20世纪70年代提出,80年代发展成为一种实用的测试手段,并推出商品器材的。电子背散射衍射得到的图像称为电子背散射花样(Electron Backscatter Pattern,缩写为EBSP)。
上述X射线衍射以及电子衍射的激发源都是平行光,而电子背散射衍射是电子束进入样品后激发出的背散射电子以各个方向射向晶体后产生的。其花样由黑白成对的线条组成,如图5-9中荧光屏上所示,每个线条对应于一个面网。
图5-9 电子背散射衍射部件示意图
为了获得电子背散射衍射花样,必须在扫描电镜中安装EBSD部件(图5-9)。样品不能太薄,以便产生较多的背散射电子,通常制成光片,表面还须消除研磨和抛光产生的应力。安装时使样品表面与电子束成30°相交。
1993年以后生产的EBSD部件可以对衍射花样自动检索,进行物相鉴定,还可测定样品中各个晶粒的取向,进行微织构测定(microtexture determination),获得取向图(orientation image)。
⑹ 多晶x射线衍射和多晶电子衍射花样是如何形成的花样 有何特征各有何应用
电子衍射与x射线衍射一样,遵从衍射产生的必然条件(布拉格方程+反射定律,衍射矢量方程或厄瓦尔德图解等)和系统消光规律.但电子波是物质波,按入射电子能量的大小,电子衍射可分为高能电子衍射、低能电子衍射和反射式高能电子衍射,而x射线衍射是x射线照射样品.
⑺ 电子衍射的种类
二维晶体点阵
如果我们把晶体结构分析局限于表面原子层,可以发现表层原子排列的规则不一定保持其内部三维点阵的连续性,即未必与内部平行的原子面相同(见晶体表面)。为了用电子衍射方法研究这种表层的二维结构,必须满足以下两个条件:①入射束波长足够短,根据二维点阵衍射的布喇格方程,波长应小于点阵周期;②电子束的穿透和逸出深度限于表面几个原子层。最能满足上述要求的是利用低能(50~500eV)电子束和掠射角接近于零的高能(30~50keV)电子束作为表层结构分析的微探针,分别称为低能电子衍射(lowenergyelectrondiffraction)和反射式高能电子衍射()。
低能电子衍射
电子衍射一束低能量电子平行地入射样品表面,在全部背向散射的电子中,约有1%为弹性背散射电子(能量与入射电子相同)。由于表面原子排列的点阵特性,这种电子的弹性相干散射将在接收阳极的荧光屏上显示规则的斑点花样。为了检测低能电子的微弱信号,通常采用所谓后加速(post-acceleration)技术,由样品表面背散射的电子在穿过和样品同电位的栅极G1以后,才受到处于高电位的接收阳极的加速,并撞击到荧光屏上产生可供观察或记录的衍射斑点。栅极G2比电子枪灯丝稍负,用以阻挡非弹性散射电子通过,降低花样的背景。为了研究真正的表层结构,必须严格控制分析室内因残余气体吸附引起的污染,一般需保持10-9~10-10Torr(10-7~10-8Pa)的超高真空。
随着表面科学的发展,低能电子衍射在研究表面结构、表面缺陷、气相沉积表面膜的生成(如外延生长)、氧化膜的结构、气体的吸附和催化过程等方面,得到了广泛的应用。低能电子衍射常与俄歇电子谱仪(AES)、电子能谱化学分析仪(ESCA)等组合成多功能表面分析仪,因为它们在超高真空要求和被检测电子信息的能量范围等方面都比较接近。
低能电子衍射(LEED),是将能量为5~500eV范围的单色电子入射于样品表面,通过电子与晶体相互作用,一部分电子以相干散射的形式反射到真空中,所形成的衍射束进入可移动的接收器进行强度测量,或者再被加速至荧光
电子衍射屏,给出可观察的衍射图像[低能电子衍射仪简图]。图中,第一栅接地,使衍射电子自由飞过样品和栅之间的空间;第二栅加几十伏负电压,可滤去非弹性散射电子。荧光屏施加千伏高压,使电子有足够的能量激发荧光物质。由于物质对电子的散射比对X射线的散射强很多,使低能电子具有很高的表面灵敏度。虽然在1927年C.J.戴维孙和L.H.革末发现了LEED,但因多重散射带来了技术上和理论上的复杂性,使低能衍射的实际应用推迟了40年。直到70年代以后,在超高真空技术发展的基础上,才使此技术获得新生。
低能电子衍射图样给出晶体表面倒易空间的晶网像,或者说直接给出晶体倒易点阵的一个二维截面(见表面结构),它可以在一个二维模型基础上运用衍射的运动学理论加以解释(见衍射动力学理论)。一个无限大的二维晶体,其倒易点阵是垂直于二维晶面的倒易棒所形成之阵列,如图2[二维周期性结构衍射束的厄瓦耳球结构]所示。平行于此晶面的入射波矢k与散射波矢(k)之差等于此晶面的二维倒易点阵矢量G,即有(k)-k=G时,满足衍射加强条件。故于图2[二维周期性结构衍射束的厄瓦耳球结构]中以入射波矢k为半径作一球(称为厄瓦耳球),球与倒易棒的交点,即给出衍射束的波矢k。在相应的正空间中,衍射加强条件就是布格公式中、为二维平移矢量的长度。从衍射图可以确定表面平移矢量a、b,研究各种类型的表面有序结构,给出相应的空间群(见表面结构)。
衍射强度分析是利用LEED确定表面单胞内原子位置的核心问题由于慢电子的动能与晶体中散射势相近,通常处理高能电子衍射的运动学理论或修正的运动学理论不能用于低能电子衍射。理论计算与实验数据的比较表明,分析低能电子在晶体中的行为,必须考虑晶体中原子、电子及声子与它的相互作用,以及低能电子在晶体中所受的多重散射。将所有这些相互作用表示成为一个有效势(),低能电子的哈密顿量即写为待求的衍射强度等于本征波函数的模的二次方||。现代低能电子衍射理论分析很多就是从多重散射格林函数方法出发,对具体散射过程作各种模型假设,发展了若干行之有效的方法,如KKR法、贝基T-矩阵法、重正化向前散射法、双层法、链方法及其他微扰法。低能衍射技术已推广到研究表面缺陷、二维相变,其理论分析方法也为其他的表面分析技术所借鉴。
低能电子衍射仪常与多种表面分析仪联用,综合地分析各种金属、半导体的清洁表面与吸附表面的元素组成和表面原子结构。
反射式高能
如果采用30~50kV的电子枪加速电压,电子波长范围在0.00698~0.00536nm之间,用这样能量的平行电子束以小于1°的掠射角入射样品表面,即为反射式高能电子衍射。RHEED也能以与LEED相当的灵敏度检测表面结构。
反射式高能电子衍射是一种研究晶体外延生长、精确测定表面结晶状态以及表面氧化、还原过程等的有效分析手段。由于接收系统的改进,在多功能表面分析仪中RHEED和LEED都能进行,使表面结构的研究更为方便。
⑻ 求助:谁知道电子衍射研究的意义和国内的发展情况
电子衍射实验对确立电子的波粒二象性和
建立量子力学起过重要作用.历史上在认识
电子的波粒二象性之前,已经确立了光的波粒二象性.
电子背散射衍射系统(EBSD)是显微分析领域最具活力和前景的亚微米级显微分析技术手段。
它作为扫描电镜上的一个附件,集显微结构,显微织构,相鉴定等多种功能于一身,
开辟了一个全新的科学领域:INCA Crystal
覆盖了TEM和XRD的部分研究范围,更重要的是,
可以进行许多TEM和XRD所不能完成的研究工作。
电子衍射图在晶体学中的应用,薄晶体电子显微学,
材料结构电子显微分析,材料评价的高分辨,
电子显微方法成为第一批证实德布罗意假说的实验,
所以这是近代物理学发展史上一个重要实验。
⑼ 电子衍射测定晶体结构的方法 (相关仪器,设备简介)
目前电子衍射的设备很多,但都要依附于超高真空设备中,
简单介绍几种如下:
1、如表面科学中的低能电子衍射(LEED),主要应用于高取向晶体表面晶格的研究,比如畸变,吸附。
LEED结构目前也应用在透射电子显微镜(TEM)中,利用聚焦到很小光斑的电子束对纳米结构中的局域有序做结构探测。
LEED只能够作晶格类型分析,不能进行元素分析。
2、反射式高能电子衍射(RHEED),主要应用于分子束外延等设备的原位监测,能够很好的反映表面晶格的平整度,观测材料生长中的衍射强度及位置的振荡。
3、电子显微镜附件,主要是场发射扫描电子显微镜(FESEM),一般属于附件,称选区电子衍射(SAD),可以利用质能选择器对反射电子作元素分析,能够分析很小的区域元素组成,但结果较为粗糙。
电子衍射的原理可以参考XRD,观测到的衍射花纹都是表面晶格的倒易格点,可能是一套,也可能是几套。
一般,除了纳米材料研究中在电镜用电子衍射中常将衍射花纹作为晶格类型的佐证外,常规的LEED和RHEED并不作体材料三维晶格研究,而只用于表面晶格的判定,因为电子衍射一般只能反映晶格的二维表面结构,而不同晶体结构的晶体之间,它们的某一表面取向上它的对称性及衍射斑点可能会完全一致。
电子衍射一般只用于测试二维晶体结构,无法简单作三维体晶格判定,更无法单独作元素判定。
所以你所说的ED测定晶格的说法是要注意的,ED很少或几乎没有单独研究三维晶体结构。
电子衍射结构其实很简单,简单讲就三个部件:
1、灯丝,用于产生电子
2、加速电压,
(1)
电子加速电压
(电压大小要单独可控)
(2)
xy平面内的转向电压
3、荧光屏,注意导电接地。
此外电子衍射还需要有一个超高真空腔体作为设备的基础;
还要有一个位置可调的多维样品架(样品台)系统;
如果需要做衍射斑点位置亮度分析,还要有CCD图像采集系统。