‘壹’ 二叉树的算法
如果一棵具有n个结点的深度为k的二叉树,它的每一个结点都与深度为k的满二叉树中编号为1~n的结点一一对应,这棵二叉树称为完全二叉树。
可以根据公式进行推导,假设n0是度为0的结点总数(即叶子结点数),n1是度为1的结点总数,n2是度为2的结点总数,由二叉树的性质可知:n0=n2+1,则n= n0+n1+n2(其中n为完全二叉树的结点总数),由上述公式把n2消去得:n= 2n0+n1-1,由于完全二叉树中度为1的结点数只有两种可能0或1,由此得到n0=(n+1)/2或n0=n/2,合并成一个公式:n0=(n+1)/2 ,就可根据完全二叉树的结点总数计算出叶子结点数。
因此叶子结点数是(839+1)/2=420
‘贰’ 二叉树的深度算法怎么算啊
二叉树的深度算法:
一、递归实现基本思想:
为了求得树的深度,可以先求左右子树的深度,取二者较大者加1即是树的深度,递归返回的条件是若节点为空,返回0
算法:
1
int
FindTreeDeep(BinTree
BT){
2
int
deep=0;
3
if(BT){
4
int
lchilddeep=FindTreeDeep(BT->lchild);
5
int
rchilddeep=FindTreeDeep(BT->rchild);
6
deep=lchilddeep>=rchilddeep?lchilddeep+1:rchilddeep+1;
7
}
8
return
deep;
9
}
二、非递归实现基本思想:
受后续遍历二叉树思想的启发,想到可以利用后续遍历的方法来求二叉树的深度,在每一次输出的地方替换成算栈S的大小,遍历结束后最大的栈S长度即是栈的深度。
算法的执行步骤如下:
(1)当树非空时,将指针p指向根节点,p为当前节点指针。
(2)将p压入栈S中,0压入栈tag中,并令p执行其左孩子。
(3)重复步骤(2),直到p为空。
(4)如果tag栈中的栈顶元素为1,跳至步骤(6)。从右子树返回
(5)如果tag栈中的栈顶元素为0,跳至步骤(7)。从左子树返回
(6)比较treedeep与栈的深度,取较大的赋给treedeep,对栈S和栈tag出栈操作,p指向NULL,并跳至步骤(8)。
(7)将p指向栈S栈顶元素的右孩子,弹出栈tag,并把1压入栈tag。(另外一种方法,直接修改栈tag栈顶的值为1也可以)
(8)循环(2)~(7),直到栈为空并且p为空
(9)返回treedeep,结束遍历
1
int
TreeDeep(BinTree
BT
){
2
int
treedeep=0;
3
stack
S;
4
stack
tag;
5
BinTree
p=BT;
6
while(p!=NULL||!isEmpty(S)){
7
while(p!=NULL){
8
push(S,p);
9
push(tag,0);
10
p=p->lchild;
11
}
12
if(Top(tag)==1){
13
deeptree=deeptree>S.length?deeptree:S.length;
14
pop(S);
15
pop(tag);
16
p=NULL;
17
}else{
18
p=Top(S);
19
p=p->rchild;
20
pop(tag);
21
push(tag,1);
22
}
23
}
24
return
deeptree;
25
}
‘叁’ 二叉树的深度怎么算
二叉树的深度计算,首先要判断节点,以下是计算二叉树的详细步骤:
1、一颗树只有一个节点,它的深度是1;
2、二叉树的根节点只有左子树而没有右子树,那么可以判断,二叉树的深度应该是其左子树的深度加1;
3、二叉树的根节点只有右子树而没有左子树,那么可以判断,那么二叉树的深度应该是其右树的深度加1;
4、二叉树的根节点既有右子树又有左子树,那么可以判断,那么二叉树的深度应该是其左右子树的深度较大值加1。
一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。
具有n个节点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至少有2k-1个叶子节点,至多有2k-1个节点。
5、有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
若I为结点编号则 如果I>1,则其父结点的编号为I/2;
如果2*I<=N,则其左孩子(即左子树的根结点)的编号为2*I;若2*I>N,则无左孩子;
‘肆’ 二叉树各种计算公式总结有哪些
二叉树各种计算公式总结有n个节点的二叉树一共有2n除以n乘以 n+1这种,n层二叉树的第n层最多为2乘n减1个。二叉树节点计算公式 N 等于n0加n1加n2,度为0的叶子节点比度为2的节点数多一个。N等于1乘n1加2乘n2加1。具有n个节点的完全二叉树的深度为log2n加 1。
二叉树的含义
二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个最多只能有两棵子树,且有左右之分。
二叉树是n个有限元素的集合,该集合或者为空,或者由一个称为根的元素及两个不相交的,被分别称为左子树和右子树的二叉树组成,是有序树。当集合为空时,称该二叉树为空二叉树。
‘伍’ 关于二叉树的计算
答案:dgebhfca
分析:排列的概念问题,就不多说了。从前序排列可以得出,树的根节点为a,根节点的左节点为b,再根据中序排列中从根节点a的左右分开分别为左右子树的结点,左子树为dbge,右子树为chf,再根据前序排列c为右子树第一个即为根节点的右结点。再根据中序排列中右边根节点的左边为d,即d为b的左子树且可以看出d没有左右子树,又在根据前序排列中e紧跟在b后面得出e为b右子树,再根据根据中序排列中g在e前得出g为e的左子树。
根节点的右子树就不多做分析了,原理类似。
最后得出如下二叉树,最后再进行后序排列。
‘陆’ 二叉树算法
int deep(BiTree T)
{
int a,b;
if(T==NULL)//若为空树,深度为0
return 0;
if((a=deep(T->lchild))>(b=deep(T->rchild)))//若左孩子深度大于右孩子
return(a+1);//返回左孩子深度+1
else reurn(b+1);//否则返回右孩子深度+1
}
‘柒’ 二叉树的叶子节点数如何计算
结点的度是指,该结点的子树的个数,在二叉树中,不存在度大于2的结点。
计算公式:n0=n2+1
n0 是叶子节点的个数
n2 是度为2的结点的个数
n0=n2+1=5+1=6
故二叉树有5个度为2的结点,则该二叉树中的叶子结点数为6。
叶子结点是离散数学中的概念。一棵树当中没有子结点(即度为0)的结点称为叶子结点,简称“叶子”。 叶子是指度为0的结点,又称为终端结点。
叶子结点 就是度为0的结点 就是没有子结点的结点。
n0:度为0的结点数,n1:度为1的结点 n2:度为2的结点数。 N是总结点
在二叉树中:
n0=n2+1;
N=n0+n1+n2
‘捌’ 二叉树参数计算,急求
给你提供思路吧,使用先根遍历程序搜索所有子节点,搜索完毕数量就统计出来了。具体流程:找到最底层的一个叶子,然后分配一个int数组 数组长度是树的层数,
‘玖’ 二叉树结点的计算方法
一般会给你一度的结点个数,在给你一个已知的0度或是2度的节点个数
再根据度是0的节点个数比度是2的节点个数多1的二叉树特性来算出总共的节点!
‘拾’ c语言中二叉树个数计算方法
递归……非空树的总结点数=左子树结点数+右子树结点数+1(也就是根结点)。
伪代码:
int
node_counter(TreeNode
*root)
{
if
(root==null)
return
0;
else
return
node_counter(root->left)
+
node_counter(root->right)
+
1;
}