导航:首页 > 研究方法 > 数据分析的建模方法

数据分析的建模方法

发布时间:2022-01-10 06:19:11

⑴ 大数据建模一般有哪些步骤

1、数据测量


数据测量包括ECU内部数据获取,车内总线数据获取以及模拟量数据获取,特别是对于新能源汽车电机、逆变器和整流器等设备频率高达100KHz的信号测量,ETAS提供完整的解决方案。


2、大数据管理与分析


目前的汽车嵌入式控制系统开发环境下,人们可以通过各种各样不同的途径(如真实物体、仿真环境、模拟计算等)获取描述目标系统行为和表现的海量数据。


正如前文所述,ETAS数据测量环节获取了大量的ECU内部以及模拟量数据,如何存储并有效地利用这些数据,并从中发掘出目标系统的潜力,用以指引进一步的研发过程,成为极其重要的课题。


3、虚拟车辆模型建模与校准


基于大数据管理与分析环节对测量数据进行的分析,我们得到了一些参数之间的相互影响关系,以及相关物理变量的特性曲线。如何将这些隐含在大量数据中的宝贵的知识和数据保存下来并为我们后续的系统仿真分析所用呢?


模型是一个比较好的保存方式,我们可以通过建立虚拟车辆及虚拟ECU模型库,为后续车辆及ECU的开发验证提供标准化的仿真模型。ETAS除提供相关车辆子系统模型,还提供基于数据的建模和参数校准等完整解决方案。


4、测试与验证(XiL)


在测试与验证环节,通常包含模型在环验证(MiL),软件在环验证(SiL),虚拟测试系统验证(VTS)以及硬件在环验证(HiL)四个阶段,ETAS提供COSYM实现在同一软件平台上开展四个环节仿真验证工作。


关于大数据建模一般有哪些步骤,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑵ 数据分析方法与模型都有哪些

现在的大数据的流行程度不用说大家都知道,大数据离不开数据分析,而数据分析的方法和数据分析模型多种多样,按照数据分析将这些数据分析方法与模型分为对比分析、分类分析、相关分析和综合分析四种方式,这四种方式的不同点前三类以定性的数据分析方法与模型为主,综合类数据分析方法与模型是注重定性与定量相结合。

一、分类分析数据分析法
在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。

二、对比分析数据分析方法
很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。

三、相关分析数据分析法相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。
而敏感性分析是指从定量分析的角度研究有关因素发生某种变化时对某一个或一组关键指标影响程度的一种不确定分析技术。
回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
时间序列是将一个指标在不相同的时间点上的取值,按照时间的先后顺序排列而成的一列数。时间序列实验研究对象的历史行为的客观记录,因而它包含了研究对象的结构特征以及规律。

四、综合分析数据分析法
层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。
而综合分析与层次分析是不同的,综合分析是指运用各种统计、财务等综合指标来反馈和研究社会经济现象总体的一般特征和数量关系的研究方法

上述提到的数据分析方法与数据分析模型在企业经营、管理、投资决策最为常用,在企业决策中起着至关重要的作用。一般来说,对比分析、分类分析、相关分析和综合分析这四种方法都是数据分析师比较常用的,希望这篇文章能够帮助大家更好的理解大数据。

⑶ 数据分析的过程包括哪些步骤

大数据的好处大家都知道,说白了就是大数据可以为公司的未来提供发展方向。利用大数据就离不开数据分析。而数据分析一般都要用一定的步骤,数据分析步骤主要包括4个既相对独立又互有联系的过程,分别是:设计数据分析方案、数据收集、数据处理及展现、数据分析4个步骤。

设计数据分析方案
我们都知道,做任何事情都要有目的,数据分析也不例外,设计数据分析方案就是要明确分析的目的和内容。开展数据分析之前,只有明确数据分析的目的,才不会走错方向,否则得到的数据没有指导意义,甚至可能将决策者带进弯路,不但浪费时间,严重时容易使公司决策失误。
当分析的数据目的明确后,就需要把他分解成若干个不同的分析要点,只有明确分析的目的,分析内容才能确定下来。明确数据分析目的的内容也是确保数据分析过程有效进行的先决条件,数据分析方案可以为数据收集、处理以及分析提供清晰地指引方向。根据数据分析的目的和内容涉及数据分析进行实施计划,这样就能确定分析对象、分析方法、分析周期及预算,保证数据分析的结果符合此次分析目的。这样才能够设计出合适的分析方案。

数据收集
数据收集是按照确定的数据分析内容,收集相关数据的过程,它为数据分析提供了素材和依据。数据收集主要收集的是两种数据,一种指的是可直接获取的数据,另一种就是经过加工整理后得到的数据。做好数据收集工作就是对于数据分析提供一个坚实的基础。

数据处理
数据处理就是指对收集到的数据进行加工整理,形成适合的数据分析的样式和数据分析的图表,数据处理是数据分析必不可少的阶段,数据处理的基本目的是从大量的数据和没有规律的数据中提取出对解决问题有价值、有意义的数据。同时还需要处理好肮脏数据,从而净化数据环境。这样为数据分析做好铺垫。

数据分析
数据分析主要是指运用多种数据分析的方法与模型对处理的数据进行和研究,通过数据分析从中发现数据的内部关系和规律,掌握好这些关系和规律就能够更好的进行数据分析工作。
数据分析的步骤其实还是比较简单的,不过大家在进行数据分析的时候一定宁要注意上面提到的内容,按照上面的内容分步骤做,这样才能够在做数据分析的时候有一个清晰的大脑思路,同时还需要极强的耐心,最后还需要持之以恒。

⑷ 数据分析的步骤是什么

1.问题定义
比较典型的场景是我们需要针对企业的数据进行分析,比如公司通常会有销售数据、用户数据、运营数据、产品生产数据……你需要从这些数据里获得哪些有用的信息,对策略的制定进行指导呢?又比如你需要做的是一份市场调研或者行业分析,那么你需要知道你需要获得关于这个行业的哪些信息。
首先你需要确定去分析的问题是什么?你想得出哪些结论?
比如某地区空气质量变化的趋势是什么?
王者荣耀玩家的用户画像是什么样的?经常消费的是那类人?
影响公司销售额增长的关键因素是什么?
生产环节中影响产能和质量的核心指标是什么?
如何对分析用户画像并进行精准营销?
如何基于历史数据预测未来某个阶段用户行为?
这些问题可能来源于你已有的经验和知识。比如你已经知道每周的不同时间用户购买量不一样,那么你可以通过分析得出销量和时间的精确关系,从而精准备货。又比如你知道北京最近几年的空气质量是在变坏的,可能的因素是工厂排放、沙尘暴、居民排放、天气因素等,那么在定义问题的时候你就需要想清楚,需要针对哪些因素进行重点分析。
有些问题则并不清晰,比如在生产环节中,影响质量的核心指标是什么,是原材料?设备水平?工人水平?天气情况?某个环节工艺的复杂度?某项操作的重复次数?……这些可能并不明显,或者你是涉足新的领域,并没有非常专业的知识,那么你可能需要定义的问题就需要更加宽泛,涵盖更多的可能性。
问题的定义可能需要你去了解业务的核心知识,并从中获得一些可以帮助你进行分析的经验。从某种程度上说,这也是我们经常提到的数据思维。数据分析很多时候可以帮助你发现我们不容易发现的相关性,但对问题的精确定义,可以从很大程度上提升数据分析的效率。
如何更好地定义问题?
这就需要你在长期的训练中找到对数据的感觉,开始的时候你拿到特别大的数据,有非常多的字段,可能会很懵逼,到底应该从什么地方下手呢?
但如果有一些经验就会好很多。比如,你要研究影响跑步运动员速度的身体因素,那么我们可能会去研究运动员的身高、腿长、体重、甚至心率、血压、臂长,而不太会去研究运动员的腋毛长度,这是基于我们已有的知识。又比如我们要分析影响一个地方房价的因素,那么我们可能会有一些通用的常识,比如城市人口、地理位置、GDP、地价、物价水平,更深入的可能会有产业格局、文化状态、气候情况等等,但一般我们不会去研究城市的女孩长相,美女占比。
所以当你分析的问题多了之后,你就会有一些自己对数据的敏感度,从而养成用数据分析、用数据说话的习惯。这个时候你甚至可以基于一些数据,根据自己的经验做出初步的判断和预测(当然是不能取代完整样本的精准预测),这个时候,你就基本拥有数据思维了。

2.数据获取
有了具体的问题,你就需要获取相关的数据了。比如你要探究北京空气质量变化的趋势,你可能就需要收集北京最近几年的空气质量数据、天气数据,甚至工厂数据、气体排放数据、重要日程数据等等。如果你要分析影响公司销售的关键因素,你就需要调用公司的历史销售数据、用户画像数据、广告投放数据等。
数据的获取方式有多种。
一是公司的销售、用户数据,可以直接从企业数据库调取,所以你需要SQL技能去完成数据提取等的数据库管理工作。比如你可以根据你的需要提取2017年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。
第二种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。当然这种方式也有一些缺陷,通常数据会发布的比较滞后,但通常因为客观性、权威性,仍然具有很大的价值。
第三种是编写网页爬虫,去收集互联网上的数据。比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析,这算是非常靠谱的市场调研、竞品分析的方式了。
当然,比较BUG的一点是,你通常并不能够获得所有你需要的数据,这对你的分析结果是有一定影响的,但不不影响的是,你通过有限的可获取的数据,提取更多有用的信息。

3.数据预处理
现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据分析,或分析结果差强人意。数据预处理有多种方法:数据清理,数据集成,数据变换,数据归约等。把这些影响分析的数据处理好,才能获得更加精确地分析结果。
比如空气质量的数据,其中有很多天的数据由于设备的原因是没有监测到的,有一些数据是记录重复的,还有一些数据是设备故障时监测无效的。
那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
当然在这里我们还可能会有数据的分组、基本描述统计量的计算、基本统计图形的绘制、数据取值的转换、数据的正态化处理等,能够帮助我们掌握数据的分布特征,是进一步深入分析和建模的基础。

4.数据分析与建模
在这个部分需要了解基本的数据分析方法、数据挖掘算法,了解不同方法适用的场景和适合的问题。分析时应切忌滥用和误用统计分析方法。滥用和误用统计分析方法主要是由于对方法能解决哪类问题、方法适用的前提、方法对数据的要求不清等原因造成的。
另外,选择几种统计分析方法对数据进行探索性的反复分析也是极为重要的。每一种统计分析方法都有自己的特点和局限,因此,一般需要选择几种方法反复印证分析,仅依据一种分析方法的结果就断然下结论是不科学的。
比如你发现在一定条件下,销量和价格是正比关系,那么你可以据此建立一个线性回归模型,你发现价格和广告是非线性关系,你可以先建立一个逻辑回归模型来进行分析。
一般情况下,回归分析的方法可以满足很大一部分的分析需求,当然你也可以了解一些数据挖掘的算法、特征提取的方法来优化自己的模型,获得更好地结果。

5.数据可视化及数据报告的撰写
分析结果最直接的结果是统计量的描述和统计量的展示。
比如我们通过数据的分布发现数据分析工资最高的5个城市,目前各种语言的流行度排行榜,近几年北京空气质量的变化趋势,避孕套消费的地区分布……这些都是我们通过简单数据分析与可视化就可以展现出的结果。
另外一些则需要深入探究内部的关系,比如影响产品质量最关键的几个指标,你需要对不同指标与产品质量进行相关性分析之后才能得出正确结论。又比如你需要预测未来某个时间段的产品销量,则需要你对历史数据进行建模和分析,才能对未来的情况有更精准的预测。
数据分析报告不仅是分析结果的直接呈现,还是对相关情况的一个全面的认识。我们经常看到一些行业分析报告从不同角度、深入浅析地剖析各种关系。所以你需要一个讲故事的逻辑,如何从一个宏观的问题,深入、细化到问题内部的方方面面,得出令人信服的结果,这需要从实践中不断训练。

数据分析的一般流程总的来说就是这几个步骤:问题定义、数据获取、数据预处理、数据分析与建模、数据可视化与数据报告的撰写。

⑸ 数据分析建模步骤有哪些

1、分类和聚类


分类算法是极其常用的数据挖掘方法之一,其核心思想是找出目标数据项的共同特征,并按照分类规则将数据项划分为不同的类别。聚类算法则是把一组数据按照相似性和差异性分为若干类别,使得同一类别数据间的相似性尽可能大,不同类别数据的相似性尽可能小。分类和聚类的目的都是将数据项进行归类,但二者具有显着的区别。分类是有监督的学习,即这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类则是无监督的学习,不需要对数据进行训练和学习。常见的分类算法有决策树分类算法、贝叶斯分类算法等;聚类算法则包括系统聚类,K-means均值聚类等。


2、回归分析


回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,其主要研究的问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。按照模型自变量的多少,回归算法可以分为一元回归分析和多元回归分析;按照自变量和因变量间的关系,又可分为线性回归和非线性回归分析。


3、神经网络


神经网络算法是在现代神经生物学研究的基础上发展起来的一种模拟人脑信息处理机制的网络系统,不但具备一般计算能力,还具有处理知识的思维、学习和记忆能力。它是一种基于导师的学习算法,可以模拟复杂系统的输入和输出,同时具有非常强的非线性映射能力。基于神经网络的挖掘过程由数据准备、规则提取、规则应用和预测评估四个阶段组成,在数据挖掘中,经常利用神经网络算法进行预测工作。


4、关联分析


关联分析是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的关联、相关性或因果结构,即描述数据库中不同数据项之间所存在关系的规则。例如,一项数据发生变化,另一项也跟随发生变化,则这两个数据项之间可能存在某种关联。关联分析是一个很有用的数据挖掘模型,能够帮助企业输出很多有用的产品组合推荐、优惠促销组合,能够找到的潜在客户,真正的把数据挖掘落到实处。4市场营销大数据挖掘在精准营销领域的应用可分为两大类,包括离线应用和在线应用。其中,离线应用主要是基于客户画像进行数据挖掘,进行不同目的针对性营销活动,包括潜在客户挖掘、流失客户挽留、制定精细化营销媒介等。而在线应用则是基于实时数据挖掘结果,进行精准化的广告推送和市场营销,具体包括DMP,DSP和程序化购买等应用。

⑹ 数据分析模型和方法有哪些

1、分类分析数据分析法


在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。


2、对比分析数据分析方法


很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。


3、相关分析数据分析法


相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。


4、综合分析数据分析法


层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。

⑺ 大数据建模常用方法有哪些

第一步:选择模型或自定义模式
一般情况,模型都有一个固定的模样和形式。但是,有些模型包含的范围较广,比如回归模型,其实不是某一个特定的模型,而是一类模型。我们知道,所谓的回归模型,其实就是自变量和因变量的一个函数关系式而已,如下表所示。因此,回归模型的选择,也就有了无限的可能性,回归模型的样子(或叫方程)可以是你能够想到的任何形式的回归方程。所以,从某种意义上看,你自己想出一个很少人见过的回归方程,也可以勉强算是自定义模型了哈!
第二步:训练模型
当模型选择好了以后,就到了训练模型这一步。
我们知道,之所以叫模型,这个模型大致的形状或模式是固定的,但模型中还会有一些不确定的东东在里面,这样模型才会有通用性,如果模型中所有的东西都固定死了,模型的通用性就没有了。模型中可以适当变化的部分,一般叫做参数,就比如前面回归模型中的α、β等参数。
所谓训练模型,其实就是要基于真实的业务数据来确定最合适的模型参数而已。模型训练好了,也就是意味着找到了最合适的参数。一旦找到最优参数,模型就基本可用了。
第三步:评估模型
模型训练好以后,接下来就是评估模型。
所谓评估模型,就是决定一下模型的质量,判断模型是否有用。
前面说过,模型的好坏是不能够单独评估的,一个模型的好坏是需要放在特定的业务场景下来评估的,也就是基于特定的数据集下才能知道哪个模型好与坏。
第四步:应用模型
如果评估模型质量在可接受的范围内,而且没有出现过拟合,于是就可以开始应用模型了。
这一步,就需要将可用的模型开发出来,并部署在数据分析系统中,然后可以形成数据分析的模板和可视化的分析结果,以便实现自动化的数据分析报告。
应用模型,就是将模型应用于真实的业务场景。构建模型的目的,就是要用于解决工作中的业务问题的,比如预测客户行为,比如划分客户群,等等。
五步:优化模型
优化模型,一般发生在两种情况下:
一是在评估模型中,如果发现模型欠拟合,或者过拟合,说明这个模型待优化。
二是在真实应用场景中,定期进行优化,或者当发现模型在真实的业务场景中效果不好时,也要启动优化。
如果在评估模型时,发现模型欠拟合(即效果不佳)或者过拟合,则模型不可用,需要优化模型。所谓的模型优化,可以有以下几种情况:
1)重新选择一个新的模型;
2)模型中增加新的考虑因素;
3)尝试调整模型中的阈值到最优;
4)尝试对原始数据进行更多的预处理,比如派生新变量。
不同的模型,其模型优化的具体做法也不一样。比如回归模型的优化,你可能要考虑异常数据对模型的影响,也要进行非线性和共线性的检验;再比如说分类模型的优化,主要是一些阈值的调整,以实现精准性与通用性的均衡。

⑻ 数据分析中有哪些常见的数据模型

要进行一次完整的数据分析,首先要明确数据分析思路,如从那几个方面开展数据分析,各方面都包含什么内容或指标。是分析框架,给出分析工作的宏观框架,根据框架中包含的内容,再运用具体的分析方法进行分析。

数据分析方法论的作用:

五大数据分析模型
1.PEST分析模型


最后

五大数据分析模型的应用场景根据数据分析所选取的指标不同也有所区别。


PEST分析模型主要针对宏观市场环境进行分析,从政治、经济、社会以及技术四个维度对产品或服务是否适合进入市场进行数据化的分析,最终得到结论,辅助判断产品或服务是否满足大环境。


5W2H分析模型的应用场景较广,可用于对用户行为进行分析以及产品业务分析。


逻辑树分析模型主要针对已知问题进行分析,通过对已知问题的细化分析,通过分析结论找到问题的最优解决方案。


4P营销理论模型主要用于公司或其中某一个产品线的整体运营情况分析,通过分析结论,辅助决策近期运营计划与方案。


用户行为分析模型应用场景比较单一,完全针对用户的行为进行研究分析。


当然,模型只是前人总结出的方式方法,对于我们实际工作中解决问题有引导作用,但是不可否认,具体问题还要具体分析,针对不同的情况需要进行不同的改进。

⑼ 什么是数据建模

数据建模是一个用于定义和分析在组织的信息系统范围内支持商业流程所需的数据要求的过程。简单来说,数据建模是基于对业务数据的理解和数据分析的需要,将各类数据进行整合和关联,使得数据可以最终以可视化的方式呈现,让使用者能够快速地、高效地获取到数据中有价值的信息,从而做出准确有效的决策。

之所以数据建模会变得复杂且难度大,是因为在建模过程中会引入数学公式或模型,用于确定数据实体之间的关联关系。不同的业务逻辑和商业需求需要选择不同的数学公式或模型,而且,一个好的数据模型需要通过多次的测试和优化迭代来完成,这就使得数据建模的难度变得很高。但是,数据分析中的建模并没有想象中的那么高深莫测,人人都可以做出适合自己的模型。

数据建模总归是为了分析数据从而解决商业问题。如下图数据建模的流程图,数据建模核心部分是变量处理和模型搭建。

阅读全文

与数据分析的建模方法相关的资料

热点内容
如何去地上铁锈最简单方法 浏览:810
钓小鱼方法如何开红虫拉饵 浏览:60
muji化妆水使用方法 浏览:467
触摸屏的安装方法 浏览:246
如何制作腌制鸡蛋的方法 浏览:866
用什么方法清除玻璃痕迹 浏览:911
香水的正确使用方法图解 浏览:959
抽屉安装的正确方法 浏览:918
测量脉动最好的方法 浏览:185
纱窗清洁方法视频 浏览:87
新轩逸扶手箱上盖安装方法 浏览:313
最简单的电动车修车宝制作方法 浏览:134
3345的简便方法计算 浏览:60
尿酸高有哪些方法 浏览:328
阴阳之气的最佳治疗方法 浏览:161
折纸花简单的方法 浏览:565
胸贴使用方法视频 浏览:55
研究生通知书查询方法 浏览:334
假性尖锐湿检测方法 浏览:72
阐述直发造型的步骤与方法 浏览:696