导航:首页 > 研究方法 > 有限元代数方程组求解方法研究

有限元代数方程组求解方法研究

发布时间:2022-07-13 12:29:56

1. 元计算felac有限元方法,其基本思路和解题步骤

元计算felac有限元方法,其基本思路和解题步骤
(1)建立积分方程,根据虚位移原理或方程余量,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分采用有限元方法的前处理完成,并给出计算单元和节点编号相互之间的关系、节点的位置坐标,同时还需要列出问题的边界的节点号和相应的边值条件。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元的形函数。有限元方法中的形函数是在单元中选取的,由于各单元具有规则的几何形状,在选取形函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元形函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的函数值)的单元矩阵与荷载。
(5)总体合成:在得出单元矩阵与荷载之后,将区域中所有单元矩阵与荷载按一定法则进行迭加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(Dirichlet边界条件 )、自然边界条件(Neumann边界条件)、混合边界条件(Cauchy边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则后对总体有限元方程进行修正。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,采用适当的代数方程组求解器,求出各节点的函数值。

2. 有限元法的特点

有限元分析法是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。
有限元分析,即有限元方法(冯康首次发现时称为基于变分原理的差分方法),是一种用于求解微分方程组或积分方程组数值解的数值技术. 这一解法基于完全消除微分方程, 即将微分方程转化为代数方程组(稳定情形); 或将偏微分方程(组)改写为常微分方程(组)的逼近, 这样可以用标准的数值技术(例如欧拉法,龙格-库塔法等)求解.
解偏微分方程的过程中, 主要的难点是如何构造一个方程来逼近原本研究的方程, 并且该过程还需要保持数值稳定性.目前有许多处理的方法, 他们各有利弊. 当区域改变时(就像一个边界可变的固体), 当需要的精确度在整个区域上变化, 或者当解缺少光滑性时, 有限元方法是在复杂区域(像汽车和输油管道)上解偏微分方程的一个很好的选择. 例如, 在正面碰撞仿真时, 有可能在"重要"区域(例如汽车的前部)增加预先设定的精确度并在车辆的末尾减少精度(如此可以减少仿真所需消耗); 另一个例子是模拟地球的气候模式, 预先设定陆地部分的精确度高于广阔海洋部分的精确度是非常重要的.

3. 线性代数有几种解线性方程组的方法

1、克莱姆法则

用克莱姆法则求解方程组 有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。

用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。

2、矩阵消元法

将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。

(3)有限元代数方程组求解方法研究扩展阅读

xj表未知量,aij称系数,bi称常数项。

称为系数矩阵和增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。

若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。线性方程组主要讨论的问题是:

一个方程组何时有解。

有解方程组解的个数。

对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r<n时,有无穷多解;可用消元法求解。

当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。

克莱姆法则(见行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。

4. 有限元法的运用步骤

步骤1:剖分:
将待解区域进行分割,离散成有限个元素的集合。元素(单元)的形状原则上是任意的。二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等。每个单元的顶点称为节点(或结点)。
步骤2:单元分析:
进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数。
步骤3:求解近似变分方程
用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
有限单元法最早可上溯到20世纪40年代。Courant第一次应用定义在三角区域上的分片连续函数和最小位能原理来求解St.Venant扭转问题。现代有限单元法的第一个成功的尝试是在 1956年,Turner、Clough等人在分析飞机结构时,将钢架位移法推广应用于弹性力学平面问题,给出了用三角形单元求得平面应力问题的正确答案。1960年,Clough进一步处理了平面弹性问题,并第一次提出了有限单元法,使人们认识到它的功效。
50年代末60年代初,中国的计算数学刚起步不久,在对外隔绝的情况下,冯康带领一个小组的科技人员走出了从实践到理论,再从理论到实践的发展中国计算数学的成功之路。当时的研究解决了大量的有关工程设计应力分析的大型椭圆方程计算问题,积累了丰富而有效的经验。冯康对此加以总结提高,作出了系统的理论结果。1965年冯康在《应用数学与计算数学》上发表的论文《基于变分原理的差分格式》,是中国独立于西方系统地创始了有限元法的标志。
有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。

5. 有限元分析方法的简介

有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析 的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。
有限元分析法(FEA)已应用得非常广泛,现已成为年创收达数十亿美元的相关产业的基础。即使是很复杂的应力问题的数值解,用有限元分析的常规方法就能得到。此方法是如此的重要,以至于即便像这些只对材料力学作入门性论述的模块,也应该略述其主要特点。 不管有限元法是如何的卓有成效,当你应用此法及类似的方法时,计算机解的缺点必须牢记在心头:这些解不一定能揭示诸如材料性能、几何特征等重要的变量是如何影响应力的。一旦输入数据有误,结果就会大相径庭,而分析者却难以觉察。所以理论建模最重要的作用可能是使设计者的直觉变得敏锐。有限元程序的用户应该为此目标部署设计策略,以尽可能多的封闭解和实验分析作为计算机仿真的补充。 与现代微机上许多字处理和电子制表软件包相比,有限元的程序不那么复杂。然而,这些程序的复杂程度依然使大部分用户无法有效地编写自己所需的程序。可以买到一些预先编好的商用程序1,其价格范围宽,从微机到超级计算机都可兼容。但有特定需求的用户也不必对程序的开发望而生畏,你会发现,从诸如齐凯维奇(Zienkiewicz2)等的教材中提供的程序资源可作为有用的起点。大部分有限元软件是用Fortran语言编写的,但诸如felt等某些更新的程序用的是C语言或其它更时新的程序语言。
在实践中,有限元分析法通常由三个主要步骤组成: 1、预处理:用户需建立物体待分析部分的模型,在此模型中,该部分的几何形状被分割成若干个离散的子区域——或称为“单元”。各单元在一些称为“结点”的离散点上相互连接。这些结点中有的有固定的位移,而其余的有给定的载荷。准备这样的模型可能极其耗费时间,所以商用程序之间的相互竞争就在于:如何用最友好的图形化界面的“预处理模块”,来帮助用户完成这项繁琐乏味的工作。有些预处理模块作为计算机化的画图和设计过程的组成部分,可在先前存在的CAD文件中覆盖网格,因而可以方便地完成有限元分析。 2、分析:把预处理模块准备好的数据输入到有限元程序中,从而构成并求解用线性或非线性代数方程表示的系统
u和f分别为各结点的位移和作用的外力。矩阵K的形式取决于求解问题的类3、分析的早期,用户需仔细地研读程序运算后产生的大量数字,即 型,本模块将概述桁架与线弹性体应力分析的方法。商用程序可能带有非常大的单元库,不同类型的单元适用于范围广泛的各类问题。有限元法的主要优点之一就是:许多不同类型的问题都可用相同的程序来处理,区别仅在于从单元库中指定适合于不同问题的单元类型。

6. 请问有限元方法的基本原理是什么

有限元方法的基本原理:将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表示。从而使一个连续的无限自由度问题变成离散的有限自由度问题。

将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。

(6)有限元代数方程组求解方法研究扩展阅读:

有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。

用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。

每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。

有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

7. 线性代数有几种解线性方程组的方法

第一种 消元法 ,此法 最为简单,直接消掉只剩最后一个未知数,再回代求余下的未知数,但只适用于未知数个数等于方程的个数,且有解的情况。
第二种 克拉姆法则, 如果行列式不等于零,则用常数向量替换系数行列式中的每一行再除以系数行列式,就是解;
第三种 逆矩阵法, 同样要求系数矩阵可逆,直接建立AX=b与线性方程组的关系,X=A^-1.*b就是解
第四种 增光矩阵法, 利用增广矩阵的性质(A,b)通过线性行变换,化为简约形式,确定自由变量,(各行中第一个非零元对应的未知数除外余下的就是自由变量),对自由变量进行赋值,求出其它未知数,然后写成基础解析的形式,最后写出通解。
这种方法需要先判别: 增广矩阵的秩是否等于系数矩阵的秩,相等且小于未知数个数,则无穷多解;等于未知数个数,唯一解。 秩不想等,无解。
第五种 计算机编程,随便用个软件,譬如Matlab,输入密令,直接求解。
目前这5中教为适用,适合一切齐次或者非齐次线性方程组。

8. 什么叫有限元分析方法

有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。

阅读全文

与有限元代数方程组求解方法研究相关的资料

热点内容
手机塑料焊接方法 浏览:240
地球的研究和方法 浏览:561
有什么方法清理鼻腔 浏览:934
儿童床怎么安装方法 浏览:602
线盒子的连接方法 浏览:63
临床常用的促凝和抗凝方法 浏览:662
功率因数测量方法 浏览:4
co2坡口加工方法主要有哪些 浏览:302
普通床组装方法步骤图片 浏览:545
科目一考试有没有简便方法 浏览:683
不锈钢台面的连接方法 浏览:349
两块铁板连接方法视频 浏览:400
代号龙正确安装方法 浏览:884
下山练武的最佳方法 浏览:975
茶壶的制作方法简单易学 浏览:954
异氰酸酯二聚体检测方法 浏览:520
控制感染最简单的有效方法 浏览:272
公差测量有几种测量方法 浏览:475
绩效考核的内容和方法有哪些 浏览:21
最简单的技术升压方法 浏览:526