导航:首页 > 研究方法 > 实现数据分析与可视化的方法

实现数据分析与可视化的方法

发布时间:2022-07-11 21:45:03

‘壹’ 做数据分析想要达到数据可视化效果,怎么

可以借助数据可视化分析软件呀。如果数据太多,不好好的做数据可视化分析根本无法判断好坏;没有达到数据可视化的话,很多问题容易被隐藏。数据可视化分析一般通过仪表盘、柱状图、折线图以及各类图表的展现,以更易理解的方式来诠释数据之间的复杂关系和发展趋势,以便更好地利用数据分析结果。——奥 威 BI 好 用

可以看看

‘贰’ 如何实现大数据可视化

数据可视化指的是,通过商业智能BI以图形化手段为基础,将复杂、抽象和难以理解的数据用图表进行表达,清晰有效地传达信息。数据可视化是商业智能BI数据分析的延伸,分析人员借助统计分析方法,将数据转化为信息,然后进行可视化展现。

数据可视化-派可数据商业智能BI

在商业智能BI中,数据可视化能分别为PC、移动端、大屏制作可视化报表,只需拖拉拽就能完成数据可视化分析,制作可视化报表,还拥有详细的用户权限设置功能保护数据安全。

派可数据官网

‘叁’ 数据分析之常见的数据可视化方法有哪些

【导读】现如今已然是大数据时代,许多企业的发展离不开数据分析。大数据可视化分为不同的类型:探索型和解释型。勘探类型帮助人们发现数据背后的故事,而解析数据方便给人们看。那么,在数据分析中,常见的数据可视化方法有哪些呢?今天就跟随小编一起来了解下吧!

时态

时态可视化是数据以线性的方式展示。最为关键的是时态数据可视化有一个起点和一个终点。时态可视化的一个例子可以是连接的散点图,显示诸如某些区域的温度信息。

多维

可以通过使用常用的多维方法来展示目前二维或高维度的数据。多维的展示使得效果更加多元化,满足企业的需求。

分层

分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。

网络

在网络中展示数据间的关系,它是一种常见的展示大数据量的方法。结构较为复杂。

以上就是小编今天给大家整理分享关于“数据分析之常见的数据可视化方法有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

‘肆’ 用什么工具可以实现数据可视化的效果呢

链接:http://pan..com/s/1BWBtFMYeQazJWUYSmHi5fw

提取码:yz10

Python&Tableau:商业数据分析与可视化。Tableau的程序很容易上手,各公司可以用它将大量数据拖放到数字“画布”上,转眼间就能创建好各种图表。这一软件的理念是,界面上的数据越容易操控,公司对自己在所在业务领域里的所作所为到底是正确还是错误,就能了解得越透彻。

快速分析:在数分钟内完成数据连接和可视化。Tableau 比现有的其他解决方案快 10 到 100 倍。大数据,任何数据:无论是电子表格、数据库还是 Hadoop 和云服务,任何数据都可以轻松探索。

课程目录:

前置课程-Python在咨询、金融、四大等领域的应用以及效率提升

Python基础知识

Python入门:基于Anaconda与基于Excel的Python安装和界面

简单的数学计算

Python数据分析-时间序列2-数据操作与绘图

Python数据分析-时间序列3-时间序列分解

......

‘伍’ 数据怎样可视化

简而言之,内容如上:
1、根据真实需求匹配可视化图表
一般工具内除了有基础性的图表外,还有数十种针对不同场景的可视化图表。比如说专用于展示顾客对产品、服务认可度的评分图。当你需要展示此类数据时自然要用评分图,而不是柱形图、扇形图之类。因此在制作数据可视化分析报表时,先想清到底需要展示什么数据,然后再去选择需求匹配的数据可视化分析图表。
2、颜色不要超过三种
一张表上不加限制地使用多种颜色,看得人头晕目眩,一般来说颜色控制在3种内较为理想。
3、灵活使用智能功能,避免页面过于拥挤
想要将报做得更详细,因此在同一张报表上挤进去各种可视化图表。但事实上,有些可视化图表是可以放在别的地方,这样就能节省很多空间,让数据可视化分析报表页面看上去更简洁。
4、参考软件提供的数据可视化分析报表模板
各大软件往往会提供大量现成数据可视化分析报表模板,或者是完整的UI皮肤设置。这些即可用于参考,也可直接下载使用,是非常使用的数据可视化分析报表制作素材。
数据可视化分析报表的制作步骤少、操作简单,又有大量现成的报表模板,如果刚开始还不知道怎么制作好看又实用的数据可视化分析,不如多看看软件提供的报表模板或UI主题。

‘陆’ 常见的数据可视化方法有哪些

时态


时态可视化是数据以线性的方式展示。最为关键的是时态数据可视化有一个起点和一个终点。时态可视化的一个例子可以是连接的散点图,显示诸如某些区域的温度信息。


多维


可以通过使用常用的多维方法来展示目前二维或高维度的数据。多维的展示使得效果更加多元化,满足企业的需求。


分层


分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。


网络


在网络中展示数据间的关系,它是一种常见的展示大数据量的方法。结构较为复杂。


关于常见的数据可视化方法有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

‘柒’ 将数据进行数据可视化展现

对于数据可视化,作为艺术类学生来说都不陌生,而且近年来以图像作为传播媒介的趋势下,用图像说话的能力逐渐成为设计师和建筑师的必备能力。但是在实际操作的过程中,更多的学生还是停留在用ppt自带的柱状图、饼形图画图。

其实数据可视化是一个完全可以量化的技术。

对于这一理论,有学者解释说,我们使用的表达式来描述时间的经历的方法其实更多的是“容器”和“移动对象”的概念。时间的衡量我们通常会分解成一个既有的对象或目的等,走向我们所花费的时长。对于建筑学来说,特定的时间段所在场域中发生的行为,正好是承载我们设计方案的根源。

所以对于建筑学的学生来说,分析图为什么不会画,其实是对自己调研的内容和数据没有一个本质的分析。这也是导致大家的图面过于单一,前期调研的内容与实际设计方案断层的主要原因之一。熟练运用这些逻辑来分析才是画好分析图的关键。

‘捌’ 大数据可视化的方法

数据可视化技术的出现是在1950年左右计算机图形学发展后出现的,最基本的条件就是通过计算机图形学创造出了直观的数据图形图表。如今,我们所研究的大数据可视化主要包括数据可视化、科学可视化和信息可视化。
数据可视化
数据可视化是指大型数据库中的数据,通过计算机技术能够把这些纷繁复杂的数据经过一系列快速的处理并找出其关联性,预测数据的发展趋势,并最终呈现在用户面前的过程。通过直观图形的展示让用户更直接地观察和分析数据,实现人机交互。数据可视化过程需要涉及的技术主要有几何技术、面向像素技术、分布式技术、图表技术等。
科学可视化
科学可视化是指利用计算机图形学以及图象处理技术等来展示数据信息的可视化方法。一般的可视化包括利用色彩差异、网格序列、网格无序、地理位置、尺寸大小等。但是传统的数据可视化技术不能直接应用于大数据中,需要借助计算机软件技术提供相应的算法对可视化进行改进。目前比较常见的可视化算法有分布式绘制和基于CPU的快速绘制算法。
信息可视化
信息可视化是指通过用户的视觉感知理解抽象的数据信息,加强人类对信息的理解。信息可视化处理的数据需要具有一定的数据结构,并且是一些抽象数据。如视频信息、文字信息等。对于这类抽象信息的处理,首先需要先进性数据描述,再对其进行可视化呈现。

‘玖’ 如何将数据分析结果进行可视化展现

数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,将海量的信息数据在经过分布式数据挖掘处理后将结果可视化。数据可视化主要是借助于图形化手段,清晰有效地传达与沟通信息。依据数据及其内在模式和关系,利用计算机生成的图像来获得深入认识和知识。(ITJOB)

利用人类感觉系统的广阔带宽来操纵和解释错综复杂的过程、涉及不同学科领域的数据集以及来源多样的大型抽象数据集合的模拟。但是,这并不就意味着,数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。(ITJOB)

对于数据可视化应用软件的开发就迫在眉睫,数据可视化软件的开发既要保证实现其功能用途,同时又要兼顾美学形式,这样就对数据可视化软件提出了更高的要求。目前,在国内能同时兼顾这两方面的数据可视化软件屈指可数。其中,比较受用户欢迎的是一款名为大数据魔镜的可视化分析软件。企业通过大数据魔镜可以将积累的各种来自内部和外部的数据整合起来实时分析,推动自身实现数据智能化管理,增强核心竞争力,将数据价值转化为商业价值,获取最大化利润。(ITJOB)

‘拾’ 如何将数据进行数据可视化展现

1、确认需求

在数据可视化设计前,分析人员要先完成业务需求的分析,将分析需求拆分成不同层级、不同主题的任务,捕捉其中业务的数据指标、标签,划分出不同优先级,为下一步取数做准备。

数据可视化-派可数据商业智能BI

此外,整个可视化图表页面中,色彩不宜太过丰富,颜色最好也不要太过鲜艳,把色彩对比强烈的颜色放到关键信息,用清晰的逻辑去呈现变化,突出重点部分,使用户产生更好地体验,这才是他们最希望看到的。

最后,回到数据分析本身,分析人员可以选择为制作完成的可视化图表附上自己从业务逻辑思考的信息,帮助用户更好地分辨图表展现的意义。

派可数据 商业智能BI可视化分析平台

阅读全文

与实现数据分析与可视化的方法相关的资料

热点内容
中文时态问题及解决方法 浏览:666
用什么方法能让验孕纸变两条杠 浏览:852
多肉剪枝方法图片 浏览:431
尿糖试纸的使用方法 浏览:799
信息数据统计分析方法 浏览:760
洗衣机如何排水方法视频 浏览:127
楼邦防水涂料使用方法 浏览:753
宫寒病最快治疗方法 浏览:898
奢侈手机鉴别方法 浏览:876
纸板收纳盒制作方法视频 浏览:230
卵巢癌晚期保守治疗方法 浏览:131
红豆薏米茯苓功效与作用及食用方法 浏览:679
育肥羊发烧用什么方法治 浏览:985
四季香水无籽柠檬的种植方法 浏览:906
治疗精神衰弱的方法 浏览:399
常用蓄电池的充电方法有哪三种 浏览:693
趋势股最简单有效的操作方法 浏览:180
手机塑料焊接方法 浏览:244
地球的研究和方法 浏览:565
有什么方法清理鼻腔 浏览:936