① 说出至少三种具体的热分析方法,它们分别测量什么参数与温度的关系
热重TG,样品的失去重量的过程。
差热DTA,样品与参比物之间的温度差。
热机械TMA,样品的膨胀系数。
DTG,热重微分,失重速率
DSC,差示扫面量热法
② 热重分析的基本概念
根据国际热分析协会(International Confederation for Thermal Analysis,缩写ICTA)的定义,热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。这里值得一提的是,定义为质量的变化而不是重量变化是基于在磁场作用下,强磁性材料当达到居里点时,虽然无质量变化,却有表观失重。而热重分析则指观测试样在受热过程中实质上的质量变化。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。TGA 可以得到样品的热变化所产生的热物性方面的信息。
③ 材料热分析的定义什么,具有什么意义
热分析意义:在表征材料的热性能、物理性能、三坐标测量机、机械性能以及稳定性等方面有着广泛地应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。
主要热性能参数:
1)玻璃化转变温度 (Glass Transition Temperature,Tg)非晶态聚合物的玻璃态与高弹态之间的转变温度
2)熔点(Melting Point,Tm) 完全结晶或部分结晶物质的固体状态向不同黏度的液态间的转变温度。
3)热焓 (Enthalpy)熔融热焓:是指在定压条件下,使某种物质熔融所需要的能量结晶热焓:是指在定压条件下,使某种物质结晶释放的能量
4)结晶温度( Crystallization Temperature)物质从非晶液态向完全结晶或部分结晶固态的转变温度
5)结晶度( Crystallinity)试样中结晶部分的重量百分数或体积百分数
6)比热容( Specific Heat Capacity,Cp)单位温升所需要的能量(即热容C)除以质量m
7)平均线性热膨胀系数 (Coefficient of Linear Thermal Expansion, CTE)在一定的温度间隔内,试样的长度变化与温度间隔及试样初始长度之比
8)热裂解温度 (Thermal Decomposition Temperature, Td) 聚合物受热后,高分子链开始断裂分解时的温度
参考标准:ASTM D3418-03, ISO11357-1999,GB/T 19466-2004,ASTM E1356-98,ASTM E831-00,ISO11359-1999,GB1036-89,ASTM D696-03,ASTM E1131-2003,JY/T 014-1996,IPC-TM-650
http://mt.sohu.com/20160627/n456482069.shtml
④ 什么是差热分析法
差热分析 (Differential Thermal Analysis,DTA),是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域,是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要方法。
⑤ 什么是热分析法
热分析(thermal
analysis,TA)是指用热力学参数或物理参数随温度变化的关系进行分析的方法。国际热分析协会(International
Confederation
for
Thermal
Analysis,ICTA)于1977年将热分析定义为:“热分析是测量在程序控制温度下,物质的物理性质与温度依赖关系的一类技术。”根据测定的物理参数又分为多种方法。
方法
最常用的热分析方法有:差(示)热分析(DTA)、热重量法(TG)、导数热重量法(DTG)、差示扫描量热法[1]
(DSC)、热机械分析(TMA)和动态热机械分析(DMA)。此外还有:逸气检测(EGD)、逸气分析(EGA)、
扭辫热分析(TBA)、射气热分析、热微粒分析、热膨胀法、热发声法、热光学法、热电学法、热磁学法、温度滴定法、直接注入热焓法等。测定尺寸或体积、声学、光学、电学和磁学特性的有热膨胀法、热发声法、热传声法、热光学法、热电学法和热磁学法等。
应用
热分析技术能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,对无机、有机及高分子材料的物理及化学性能方面,是重要的测试手段。热分析技术在物理、化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等领域得到广泛应用。
⑥ (热分析)DSC DTA 都是什么意思呢 求详!谢谢。
DSC:差示扫描量热计;
DTA:差热分析。
http://..com/question/184988528.html
http://..com/question/161840458.html
http://..com/question/132054168.html
http://..com/question/130474545.html
我认为DSC(差示扫描量热法)比较好,可以测定物质的熔点、比热容、玻璃化转变温度、纯度、结晶度等
差热扫描量热仪——测量的结果是温度差
差示扫描量热仪——测量的结果是热流,定量性较好
差热分析 (DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关系的一种热分析方法。差示扫描量热法 (DSC)是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。两种方法的物理含义不一样,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测相变时的热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。
DTA与DSC区别的分析
DTA:差热分析
DSC:差示扫描量热分析。
两者的原理基本相同,都是比较待测物质与参比物质随温度变化导致的热性能的差别,同样的材料可以得到形状基本相同的曲线,反应材料相同的信息,但是实验中两者记录的信息并不一样。
DTA记录的是以相同的速率加热和冷却过程中,待测物质因相变引起的热熔变化导致的与参比物质温度差别的变化。通常得到以温度(时间)为横坐标,温差为纵坐标的曲线。
DSC实验中同样需要参比物质和待测物质以相同的速率进行加热和冷却,但是记录的信息是保持两种样品的温度相同时,两者之间的热量之差。因此得到的曲线是温度(时间)为横坐标,热量差为纵坐标的曲线。
比较之下,因为DSC在实验过程中,参比物质和待测物质始终保持温度相等,所以两者之间没有热传递,在定量计算时精度比较高。而DTA只有在使用合适的参比物的情况下,峰面积才可以被转换成热量。
再者,DSC适合低温测量(低于700℃),而DTA适合高温测量(高于700℃).
差热分析法(DTA)
DTA的基本原理
差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。
差热分析的原理。将试样和参比物分别放入坩埚,置于炉中以一定速率 进行程序升温,以 表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。
⑦ 热分析有哪些应用
热分析技术是指在温度程序控制下研究材料的各种转变和反应,如脱水,结晶-熔融,蒸发,相变等以及各种无机和有机材料的热分解过程和反应动力学问题等,是一种十分重要的分析测试方法。热分析技术主要包括差示扫描量热(DSC),差热分析(DTA),热重分析(TGA)以及热机械分析(DMA)。
热分析技术作为一种科学的实验方法,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用。它的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。以下简单介绍热分析技术在一些行业的应用。
一、DSC 方法在热固性树脂固化度测试方面的应用
热固性树脂,是指树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解的一种树脂。常见的热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。其中环氧粉末涂料是热固性聚合物材料重要的一类,由于它具有良好的粘接性能,介电性能和化学稳定性,所以被广泛应用各个领域。
固化反应是指在适当的温度下环氧官能基与硬化剂作用产生链结反应。固化度是热固性聚合物材料一个很重要的参数,固化反应一般都是放热反应.放热的多少与树脂官能度的类型、参加反应的官能团的数量、固化剂的种类及其用量等有关.但是对于一个配方确定的树脂体系,固化反应热是一定的,因此用DSC可以很方便地进行固化度的测定。
二、DSC方法对塑料行业热稳定性(氧化诱导期)的测定
塑料是中国四大基础建材之一。我国是塑料制品的生产和消费大国。塑料在国民经济和日常生活中得到了广泛应用,市场空间十分广阔,尤其是电子电器、交通运输及建筑业的发展对塑料零部件和各种制品提出越来越高的要求,迫使塑料的产业升级和产品的更新换代,塑料实现高价比、节能、环保及使用安全。因此,塑料行业作为朝阳产业,仍有很大的发展空间。
⑧ 什么是热分析法简述其在金属相图绘制中的应用
热分析(thermal analysis,TA)是指用热力学参数或物理参数随温度变化的关系进行分析的方法。国际热分析协会(International Confederation for Thermal Analysis,ICTA)于1977年将热分析定义为:“热分析是测量在程序控制温度下,物质的物理性质与温度依赖关系的一类技术。”根据测定的物理参数又分为多种方法。
在金属相图绘制中的应用:
热分析技术能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,对无机、有机及高分子材料的物理及化学性能方面,是重要的测试手段。热分析技术在物理、化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等领域得到广泛应用。
⑨ 几种主要的热分析方法
温度:20~~1600 'C 主要应用:熔化及结晶转变、氧化还原反应、裂解反应等的分析研究、主要用于定性分析 2。差示扫描量热法(DSC) 测的是热量~~~ 温度:-170~~750 ‘C 分析研究:与DTA大致相同,但能定量测定多种热力学和动力学参数,如比热、反应热、转变热、反应速度和高聚物结晶度等~ 3.热重法(TG)测量对象是质量~~~ 温度:室温~~1000 ’C 主要用于:沸点、热分解反应过程分析与脱水量测定等,生成挥发性物质的固相反应分析、固体与气体反应分析等。 4.热机械分析法(TMA)分析尺寸和体积的变化~~~ 温度范围:-150~~600 ‘C 可以进行:膨胀系数、体积变化、相转变温度、应力应变关系测定,重结晶效应分析等。 5.动态热机械法(DMA) 力学性质~~~ 获得:阻尼特性、固化、胶化、玻璃化等转变分析,模量、粘度测定等。
⑩ 石英砂的差热分析图谱
差热分析法(DTA)
顾名思义,热分析可以解释为以热进行分析的一种方法。确切的定义为:热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术。这里所说的“程序控制温度”一般指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。这里的“物质”指试样本身和(或)试样的反应产物,包括中间产物。根据所测物理性质不同,热分析技术分类如表II-3-1所示。
表Ⅱ-3-1 热分析技术分类
物理性质 技术名称 简称 物理性质 技术名称 简称
质量 热重法
导热系数法
逸出气检测法
逸出气分析法
TG
DTG
EGD
EGA
机械特性 机械热分析
动态热
机械热
TMA
声学特性 热发声法
热传声法
温度 差热分析 DTA 光学特性 热光学法
焓 差示扫描量热法* DSC 电学特性 热电学法
尺度 热膨胀法 TD 磁学特性 热磁学法
*DSC分类:功率补偿DSC和热流DSC。
热分析是一类多学科的通用技术,应用范围极广。本章只简单介绍DTA、DSC和TG等基本原理和技术。
一、差热分析法(DTA)
1.DTA的基本原理
差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。
差热分析的原理如图Ⅱ-3-1所示。将试样和参比物分别放入坩埚,置于炉中以一定速率 进行程序升温,以 表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线如图Ⅱ-3-2所示。若以 对t作图,所得DTA曲线如图Ⅱ-3-3所示,在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。
图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原理图 图II-3-2 试样和参比物的升温曲线
1.参比物;2.试样;3.炉体;4.热电偶 (包括吸热转变)
图Ⅱ-3-3 DTA吸热转变曲线
DTA曲线所包围的面积S可用下式表示
式中 m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。
2.DTA曲线起止点温度和面积的测量
(1)DTA曲线起止点温度的确定
如图Ⅱ-3-3所示,DTA曲线的起始温度可取下列任一点温度:曲线偏离基线之点Ta;曲线的峰值温度Tp;曲线陡峭部分切线和基线延长线这两条线交点Tp (外推始点,extrapolatedonset)。其中Ta与仪器的灵敏度有关,灵敏度越高则出现得越早,即Ta值越低,故一般重复性较差,Tp和Te的重复性较好,其中Te最为接近热力学的平衡温度。
从外观上看,曲线回复到基线的温度是Tf(终止温度)。而反应的真正终点温度是T’f,由于整个体系的热惰性,即使反应终了,热量仍有一个散失过程,使曲线不能立即回到基线。Tf’可以通过作图的方法来确定,Tf’之后,ΔT即以指数函数降低,因而如以ΔT-(ΔT)a的对数对时间作图,可得一直线。当从峰的高温侧的底沿逆查这张图时,则偏离直线的那点,即表示终点T’f。
(2)DTA峰面积的确定
DTA的峰面积为反应前后基线所包围的面积,其测量方法有以下几种:(1)使用积分仪,可以直接读数或自动记录下差热峰的面积。(2)如果差热峰的对称性好,可作等腰三角形处理,用峰高乘以半峰宽峰高12处的宽度的方法求面积。(3)剪纸称重法,若记录纸厚薄均匀,可将差热峰剪下来,在分析天平上称其质量,其数值可以代表峰面积。
对于反应前后基线没有偏移的情况,只要联结基线就可求得峰面积,这是不言而喻的。对于基线有偏移的情况,下面两种方法是经常采用的。
1)分别作反应开始前和反应终止后的基线延长线,它们离开基线的点分别是Ta和Tf,
联结Ta,Tp,Tf各点,便得峰面积,这就是ICTA(国际热分析协会)所规定的方法(见图II-3-4(1))。
图Ⅱ-3-4 峰面积求法
2)由基线延长线和通过峰顶Tp作垂线,与DTA曲线的两个半侧所构成的两个近似三角形面积S1,S2(图II-3-4(2)中以阴影表示)之和
S=S1+S2
表示峰面积,这种求面积的方法是认为在S1中丢掉的部分与S2中多余的部分可以得到一定程度的抵消。
3.影响差热分析的主要因素
差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。一般说来,一是仪器,二是样品。虽然影响因素很多,但只要严格控制某种条件,仍可获得较好的重现性。
(1)气氛和压力的选择
气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。
(2)升温速率的影响和选择
升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。更主要的可能导致相邻两个峰重叠,分辨力下降。较慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。一般情况下选择8度·min-1~12度·min-1为宜。
(3)试样的预处理及用量
试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至毫克。样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。
(4)参比物的选择
要获得平稳的基线,参比物的选择很重要。要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。
常用α-三氧化二铝Al2O3)或煅烧过的氧化镁(MgO)或石英砂作参比物。如分析试样为金属,也可以用金属镍粉作参比物。如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决,主要是减少反应剧烈程度;如果试样加热过程中有气体产生时,可以减少气体大量出现,以免使试样冲出。选择的稀释剂不能与试样有任何化学反应或催化反应,常用的稀释剂有SiC、铁粉、Fe2O3、玻璃珠Al2O等。
(5)纸速的选择
在相同的实验条件下,同一试样如走纸速度快,峰的面积大,但峰的形状平坦,误差小;走纸速率小,峰面积小。因此,要根据不同样品选择适当的走纸速度。不同条件的选择都会影响差热曲线,除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插在试样和参比物中的位置等。市售的差热仪,以上因素都已固定,但自己装配的差热仪就要考虑这些因素。
4.DTA的仪器结构
典型的DTA装置如图II-3-5所示。
(1)温度程序控制单元
使炉温按给定的程序方式(升温、降温、恒温、循环)以一定速度上升、下降或恒定。
(2)差热放大单元
用以放大温差电势,由于记录仪量程为毫伏级,而差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号须经放大后再送入记录仪中记录。
(3)记录单元
由双笔自动记录仪将测温信号和温差信号同时记录下来。例如锡在加热熔化时的差热图如图Ⅱ-3-6所示。
图Ⅱ-3-6 锡加热时的差热图 图II-3-5 典型DTA装置的框块图
1.气氛控制;2.炉子;3.温度敏感器;
4.样品;5.参比物;6.炉腔程序控温;
7.记录仪;8.微伏放大器。
在进行差热分析过程中,如果升温时试样没有热效应,则温差电势应为常数,差热曲线为一直线,称为基线。但是由于两个热电偶的热电势和热容量以及坩埚形态、位置等不可能完全对称,在温度变化时仍有不对称电势产生。此电势随温度升高而变化,造成基线不直,这时可以用斜率调整线路加以调整。方法是,坩埚内不放参比物和样品,将差热放大量程置于100μV,升温速度置于10度·min-1,用移位旋钮使温差记录笔处于记录纸中部,这时记录笔应画出一条直线。在升温过程中如果基线偏离原来的位置,则主要是由于热电偶不对称电势引起基线漂移。待炉温升到750度时,通过斜率调整旋钮校正到原来位置即可。此外,基线漂移还和样品杆的位置、坩埚位置、坩埚的几何尺寸等因素
图片和表格参照下面的网址