‘壹’ 数据分析之常见的数据可视化方法有哪些
【导读】现如今已然是大数据时代,许多企业的发展离不开数据分析。大数据可视化分为不同的类型:探索型和解释型。勘探类型帮助人们发现数据背后的故事,而解析数据方便给人们看。那么,在数据分析中,常见的数据可视化方法有哪些呢?今天就跟随小编一起来了解下吧!
时态
时态可视化是数据以线性的方式展示。最为关键的是时态数据可视化有一个起点和一个终点。时态可视化的一个例子可以是连接的散点图,显示诸如某些区域的温度信息。
多维
可以通过使用常用的多维方法来展示目前二维或高维度的数据。多维的展示使得效果更加多元化,满足企业的需求。
分层
分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。
网络
在网络中展示数据间的关系,它是一种常见的展示大数据量的方法。结构较为复杂。
以上就是小编今天给大家整理分享关于“数据分析之常见的数据可视化方法有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
‘贰’ 文本分析的专用可视化形式是什么
文本可视化技术综合了文本分析、数据挖掘、数据可视化、计算机图形学、人机交互、认知科学等学科的理论和方法,为人们理解复杂的文本内容、结构和内在的规律等信息的有效手段。
‘叁’ 数据可视化的方法有哪些
数据可视化就是将数据分析的结果用图表的形式展现出来。
可以实现数据可视化的工具有:Excel、报表、BI
图表的展现形式有:柱状图、条形图、折线图、饼图、雷达图、地图、漏斗图、仪表板图、散点图、桑基图、词云和矩形树图等各种各种图形。
以下展示几张通过观远数据BI平台做的数据可视化大屏:
‘肆’ 文本分析的三种方法
文本分析法
文本分析法
方法
方法介绍
文本分析法是指从文本的表层深入到文本的深层,从而发现那些不能为普通阅读所把握的深层意义。方法有“新批评”法、文化研究法、互文法。
基本信息
中文名
文本分析法
拼音
wenbenfenxifa
定义
指从文本的表层深入到文本的深层,从而发现那些不能为普通阅读所把握的深层意义
出处
文学
类型
文学术语
展开全部
方法
“新批评”法
“新批评”的方法很基础,但也很实用,即从文本中“细读”出那些语言的非日常化运用,如“反讽”、“张力”等。“细读”现在已成为包括各种文本分析在内的一个基本功。“新批评”对诗与短篇小说等文本的分析,非常有用,但对于长篇小说就有些不知从何处下嘴了,只有结合叙述学的分析才容易提纲挈领。
符号学分析法
符号学其实是个相当宽泛的概念,我这里仅指最为经典也最常用的符号学分析方法,也就是格雷马斯的方法,主要包括矩阵分析和施动者分析等。当然,罗兰·巴特、托多罗夫等人还有其他的许多方法,但原理基本上都是一样的。所谓“结构主义”的分析方法,基本上也就是这些方法。
叙述学分析法
主要是故事分析(包括故事序列分析,故事类型分析等等),与叙述视角分析(包括叙述者的人称、位置、可信度;叙述者的声音、叙述的速度等)。当然,叙述学也同样关注人物的话语分析,看他说的话是直接引语还是间接引语,亦或是自由间接引语。因为叙述学、符号学等都是建立在语言学基础上的,所以分析一篇小说就犹如分析一个句子,人物相当于主语,人物的行动相当于谓语,而人物的品质则相当于定语或状语。
解构主义法
解构主义的方法,代表人物是法国人德里达和美国人德·曼。解构主义的一个基本原则就是从文本的边缘进入,从而颠覆掉整个文本的通常意义。俗话说:千里之堤,溃于蚁穴,解构主义者就像那个颠覆了千里之堤的大蚂蚁。
互文、对话理论分析
此方法起源于巴赫金,成熟于托多罗夫、克里斯特娃、热奈特等。结构主义一直视文本为相对封闭的系统,从而忽视了现实和社会的因素,而传统批评又只看到了社会忽略了文本,各有弊端。互文、对话理论的出现则很好地解决了这一问题,因为文本与现实社会之间被视为是互为文本的,是对话关系的,于是社会的因素与文本的规则都被分析到了。
‘伍’ 数据可视化通过哪些方式让数据展现的更直观
数据可视化的一般流程
首先我们需要对我们现有的数据进行分析,得出自己的结论,明确要表达的信息和主题(即你通过图表要说明什么问题)。然后根据这个目的在现有的或你知道的图表信息库中选择能够满足你目标的图表。最后开始动手制作图表,并对图表进行美化、检查,直至最后图表完成。
这里我们容易犯的一个错误是:先设想要达到的可视化效果,然后在去寻找相应的数据。这样经常会造成:“现有的数据不能够做出事先设想的可视化效果,或者是想要制作理想的图表需要获取更多的数据。”这样的误区。
常用的可视化工具
1、Microsoft Excel
对于这个软件大家应该并不陌生,对于一般的可视化这个软件完全足矣,但是对于一些数据量较大的数据则不太适合。
2、Google Spreadsheets
Google Spreadsheets是基于Web的应用程序,它允许使用者创建、更新和修改表格并在线实时分享数据。基于Ajax的程序和微软的Excel和CSV(逗号分隔值)文件是兼容的。表格也可以以超文本链接标记语言(HTML)的格式保存。
3、Tableau Software
Tableau Software现在比较受大家的欢迎,既可以超越Excel做一些稍微复杂的数据分析,又不用像R、Python那种编程语言进行可视化那么复杂。好多人都有推荐这款软件。
4、一些需要编程性语言的工具
R语言、JavaScript、HTML、SVG、CSS、Processing、Python。这里主要是列举一下有哪些编程语言可以实现可视化,具体如何实现需要读者自行学习。
‘陆’ Mathematica数据可视化教程---文本处理实例
方法/步骤
1、我们的目标是创建小说[爱丽斯漫游仙境]中单词频率的条形图,
所用数据集为软件自带(当然是英文)
.
当然第一步就是将文本数据导入,
然后划分成单个的字符.
不过这里有个小技巧,
就是在导入之前,
先查看一下文本都有那些属性,
可以发现一个非常有帮助的属性
"Words"
格式导入,
这样做的话,
可以节省大量的自己来划分单词的时间了.
2、在文本分析中,有一类符号,单词可以忽略,
符号包括句号、逗号,或者其它标点符号,
单词比如来讲:a,
I,
and,
of
,
to,
they,
the,
it,
you
等等,
因为他们通常没有什么信息,
称之为
停用词
(stop
words),
现在我们定义一些符号和停用词来,
等会处理的时候,
先把符号类这些过滤掉.
3、再来将停用词删除,
看看结果如何,
会出现什么异常问题.
4、哇哦,
确实出现了一些问题,
原因在于某些单词中的
i
为当做人称代词的主格删除掉了.
怎么解决呢?要把处理的过程稍微倒回去一点,
换种方法重新处理一下.
5、现在再从
temp2
中删除掉这些停用词.
请注意,
这里用的
DeleteCases
普通的模式处理函数.
6、现在,
做一点统计的工作就可以进行绘图了.
当然观察图形之中还是出现了一些无意义的单词:
she,
was
,
原因就是我们之前定义停用词的集合并未包含该词的原因,
不过这并不是重点,
我只是拿来说明问题.
‘柒’ 数据可视化常用的方式有哪些
一、面积&尺寸可视化
对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同目标对应的目标值之间的比照。
这种办法会让阅读者对数据及其之间的比照一目了然。制作这类数据可视化图形时,要用数学公式核算,来表达准确的标准和份额。
二、颜色可视化
经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。
三、图形可视化
在咱们规划目标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表愈加生动的被展示,更便于用户了解图表要表达的主题。
四、地域空间可视化
当目标数据要表达的主题跟地域有关联时,咱们一般会挑选用地图为大布景。
这样用户能够直观的了解全体的数据情况,同时也能够依据地理位置快速的定位到某一区域来查看详细数据。
五、概念可视化
经过将笼统的目标数据转换成咱们熟悉的简单感知的数据时,用户便更简单了解图形要表达的意义。
关于数据可视化常用的方式有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
‘捌’ 常用的数据可视化方式有哪些
1、面积&尺寸可视化
对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同目标对应的目标值之间的比照。
这种办法会让阅读者对数据及其之间的比照一目了然。制作这类数据可视化图形时,要用数学公式核算,来表达准确的标准和份额。
2、颜色可视化
经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。
3、图形可视化
在咱们规划目标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表愈加生动的被展示,更便于用户了解图表要表达的主题。
4、地域空间可视化
当目标数据要表达的主题跟地域有关联时,咱们一般会挑选用地图为大布景。
这样用户能够直观的了解全体的数据情况,同时也能够依据地理位置快速的定位到某一区域来查看详细数据。
5、概念可视化
经过将笼统的目标数据转换成咱们熟悉的简单感知的数据时,用户便更简单了解图形要表达的意义。
‘玖’ 一般用哪些工具做大数据可视化分析
大数据正在走进人们的生活。虽然获取数据问题不大,但有很多人不知道如何得出结论,因为数据太多。常见的数据可视化工具,在这里推荐9个:
1、Datawrapper
Datawrapper是一个用于制作交互式图表的在线数据可视化工具。一旦您从CSV文件上传数据或直接将其粘贴到字段中,Datawrapper将生成一个条,线或任何其他相关的可视化文件。许多记者和新闻机构使用Datawrapper将实时图表嵌入到他们的文章中。这是非常容易使用和生产有效的图形。
2、Tableau Public
Tableau Public可能是最流行的可视化工具,它支持各种图表,图形,地图和其他图形。这是一个完全免费的工具,你用它制作的图表可以很容易地嵌入到任何网页中。他们有一个不错的画廊,显示通过Tableau创建的可视化效果。
虽然它提供的图表和图形比其他类似工具要好得多,但我并不喜欢使用它的免费版本,因为它附带了一个很大的页脚。如果不是像我这样大的关闭,那么你一定要试试看。或者如果你能负担得起,你可以去付费版本。
3、Smartbi
Smartbi作为成熟的大数据分析平台,具备可复用、 动静结合独特的展示效果,使得数据可视化灵活强大,动静皆宜,为广大用户提供了无限的应用能力和想象空间。
除了支持使用Excel作为报表设计器,完美兼容Excel的配置项。支持Excel所有内置图形、背景图、条件格式等设计复杂的仪表盘样式,同时支持完整ECharts 图形库,支持各种各样的图形,包含瀑布图、关系图、雷达图、油量图、热力图、树图等几十种动态交互的图形,借助于地理信息技术,还打造了地图分析功能。
4、Chart.js
非常适合小型项目。尽管只有六种图表类型,开源图书馆Chart.js是用于爱好和小型项目的完美数据可视化工具。使用HTML 5 canvas元素绘制图表,Chart.js创建响应式平面设计,并且正在迅速成为最流行的开源图表库之一。
5、Raw
Raw将自己定义为“电子表格和矢量图形之间的缺失链接”。它建立在D3.js之上,设计得非常好。它有这样一个直观的界面,你会觉得你之前使用过它。它是开源的,不需要任何注册。
它有一个21图表类型的库可供选择,所有的处理在浏览器中完成。所以你的数据是安全的。RAW是高度可定制和可扩展的,甚至可以接受新的自定义布局。
6、Infogram
Infogram使您可以在线创建图表和图表。它有一个有限的免费版本和两个付费选项,其中包括200+地图,私人共享和图标库等功能。
它配备了一个易于使用的界面,其基本图表设计良好。我不喜欢的一个功能是当您尝试将交互式图表嵌入到您的网页(免费版)时所获得的巨大徽标。如果他们能像DataWrapper使用的小文本那样更好。
7、Timeline JS
顾名思义,Timeline JS可以帮助您创建美丽的时间线而无需编写任何代码。它是一个免费的开源工具,被Time和Radiolab等一些最受欢迎的网站所使用。
这是一个非常容易遵循四步过程来创建您的时间表,这在这里解释。最好的部分?它可以从各种来源获取媒体,并内置对Twitter,Flickr,Google Maps,YouTube,Vimeo,Vine,Dailymotion,Wikipedia,SoundCloud和其他类似网站的支持。
8、Plotly
Plotly是一个基于Web的数据分析和绘图工具。它支持具有内置社交分享功能的图表类型的良好集合。可用的图表和图表类型具有专业的外观和感觉。创建图表只需要加载信息并自定义布局,坐标轴,注释和图例。如果你想要开始,你可以在这里找到一些灵感。
9、Visualize Free
Visualize Free是一个托管工具,允许您使用公开可用的数据集,或者上传您自己的数据集,并构建交互式可视化来演示数据。可视化远远超出简单的图表,而且服务是完全免费的,而开发工作需要Flash,输出可以通过HTML5完成。