㈠ 硫酸雾进焚烧炉会产生二氧化硫吗
硫酸会在338℃时会分解,分解成三氧化硫和水:H2SO4=H2O+SO3,如果炉中温度超过850度,三氧化硫会分解成为二氧化硫。
㈡ 用HJ544方法测硫酸雾日均值检出限是多少很急谢谢
对于有组织排放废气,将滤筒制备成250ml 试样时,本方法检出限为0.12μg/ml,当采
样体积为400L,检出限为0.08mg/m3,测定下限为0.3 mg/m3,测定上限为500mg/m3。
对于无组织排放废气,将滤膜制备成250ml 试样时,本方法检出限为0.12μg/ml,当采
样体积为3m3, 检出限为0.01mg/m3,测定下限为0.04 mg/m3。
㈢ 测定硫酸雾是系列颜色偏低是什么原因
硫酸雾是硫酸的酸雾。因为硫酸是不挥发的,所以把一瓶浓硫酸放在实验台上,打开瓶盖,瓶口并没有硫酸雾出现。
硫酸(化学式:H₂SO₄),硫的最重要的含氧酸。无水硫酸为无色油状液体,10.36℃时结晶,通常使用的是它的各种不同浓度的水溶液,用塔式法和接触法制取。前者所得为粗制稀硫酸,质量分数一般在75%左右;后者可得质量分数98.3%的纯浓硫酸,沸点338℃,密度1840千克/立方米。
硫酸是一种最活泼的二元无机强酸,是工业三大强酸之一,能和许多金属发生反应。高浓度的硫酸有强烈吸水性,可用作脱水剂,碳化木材、纸张、棉麻织物及生物皮肉等含碳水化合物的物质。与水混合时,亦会放出大量热能。其具有强烈的腐蚀性和氧化性,故需谨慎使用。是一种重要的工业原料,可用于制造肥料、药物、炸药、颜料、洗涤剂、蓄电池等,也广泛应用于净化石油、金属冶炼以及染料等工业中。常用作化学试剂,在有机合成中可用作脱水剂和磺化剂。
纯硫酸一般为无色油状液体,密度1.84 g/cm³,沸点337℃,能与水以任意比例互溶,同时放出大量的热,使水沸腾。加热到290℃时开始释放出三氧化硫,最终变成为98.54%的水溶液,在317℃时沸腾而成为共沸混合物。硫酸的沸点及黏度较高,是因为其分子内部的氢键较强的缘故。由于硫酸的介电常数较高,因此它是电解质的良好溶剂,而作为非电解质的溶剂则不太理想。硫酸的熔点是10.371℃,加水或加三氧化硫均会使凝固点下降。硫酸的最大质量分数一般都是98%(这是由于浓硫酸有吸水性)。
硫酸是一种强酸(H2SO4=2H++SO42-),具有酸的通性,能与指示剂、多种碱、碱性氧化物、盐、氢前的金属作用。
可与氢前金属在一定条件下反应,生成相应的硫酸盐和氢气:Fe+H2SO4=FeSO4+H2↑
注意,氢后面的金属不能置换出硫酸中的氢。虽然铜、汞、银能溶解在浓硫酸中,但是发生的反应不是置换反应,而是一种氧化还原反应(浓硫酸有强氧化性)。
可与多种碱性氧化物反应,生成相应的硫酸盐和水:CuO+H2SO4=CuSO4+H2O
可与碱发生中和反应生成相应的硫酸盐和水:Cu(OH)2+H2SO4=CuSO4+2H2O
可与挥发性酸的盐反应,生成相应的硫酸盐和挥发性酸,由于硫酸不容易挥发,可以用这种复分解反应制取一些酸类物质,如:
NaCl+ H2SO4(浓)=微热=NaHSO4+HCl↑
KNO3+ H2SO4→(微热)KHSO4+HNO3↑
此外,浓硫酸还有以下一些特性。
吸水性。把一瓶浓硫酸打开瓶盖露置在空气中,质量会变大,质量分数会降低,浓度下降。这是因为浓硫酸具有吸水性,能吸附空气中的水。浓硫酸常用于洗气,浓硫酸熟知的除了能够吸收空气中的水外,还可以干燥中性和酸性的非还原性气体,如一氧化碳、氢气、氧气、氮气和所有的稀有气体、氯化氢气体、二氧化碳、二氧化硫等。
脱水性。脱水指浓硫酸按照水的氢氧原子组成比脱去有机物中氢氧元素的过程。就硫酸而言,脱水性是浓硫酸的性质,而非稀硫酸的性质,浓硫酸有脱水性且脱水性很强,脱水时按水的组成比脱去。物质被浓硫酸脱水的过程是化学变化,反应时,浓硫酸按水分子中氢氧原数的比(2:1)夺取被脱水物中的氢原子和氧原子或脱去非游离态的结晶水,如五水硫酸铜(CuSO4·5H2O)、蔗糖、甲酸等。可被浓硫酸脱水的物质一般为含氢、氧元素的有机物,其中蔗糖、木屑、纸屑和棉花等物质中的有机物,被脱水后生成了黑色的炭,这种过程称作炭化。一个典型的炭化现象是蔗糖的脱水反应。在200mL烧杯中放入20g蔗糖,加入几滴水,水加适量,搅拌均匀。然后再加入15mL质量分数为98%的浓硫酸,迅速搅拌。观察实验现象。可以看到蔗糖逐渐变黑,体积膨胀,形成疏松多孔的海绵状的炭,反应放热,还能闻到刺激性气味。反应的化学方程式是:
C12H22O11==浓硫酸==12C+11H2O
又如:
HCOOH=H2SO4(浓),加热=H2O+CO↑
C2H5OH=浓硫酸170℃=H2O + C2H4↑
CuSO4·5H2O=浓硫酸=CuSO4+5H2O
强氧化性。浓硫酸是一种强氧化剂,可以与多种物质发生氧化还原反应。
一、和金属反应。常温下浓硫酸能使铁、铝等金属钝化,即在铁、铝的表面形成一层致密的氧化膜,阻止内部的金属进一步和浓硫酸发生反应。加热时,浓硫酸可以与除金、铂之外的所有金属反应,生成高价的金属氧化物,接着金属氧化物又进一步和多余的浓硫酸反应,生成硫酸盐和水,而浓硫酸本身一般被还原成亚硫酸,亚硫酸是极不稳定的,一生成就分解为水和二氧化硫,而无氢气产生。例如,铜和浓硫酸反应,反应过程如下:
Cu+H2SO4(浓)==加热==CuO+H2SO3
H2SO3=SO2↑+H2O
CuO+H2SO4(浓)=CuSO4+H2O
总的化学方程式是:
Cu+2H2SO4(浓)==加热==CuSO4+SO2↑+2H2O
又如,铁和热的浓硫酸反应,反应过程是:
2Fe+3H2SO4(浓)==加热==Fe2O3+3H2SO3
3H2SO3=3SO2↑+3H2O
Fe2O3+3H2SO4(浓)=Fe2(SO4)3+3H2O
总的化学方程式是:
2Fe+6H2SO4(浓)==加热==Fe2(SO4)3+3SO2↑+6H2O
在上述反应中,硫酸表现出了强氧化性和酸性。
二、与非金属反应。热的浓硫酸可将碳、硫、磷等非金属单质氧化到其高价态的氧化物或含氧酸,本身被还原为亚硫酸,随即分解为二氧化硫和水。这类反应中,浓硫酸只表现出氧化性。
C+2H2SO4(浓)=加热=CO2↑+2SO2↑+2H2O
S+H2SO4(浓)==加热==3SO2↑+2H2O
2P+5H2SO4(浓)==加热==2H3PO4+5SO2↑+2H2O
三、与其他还原性物质反应。这些反应中,浓硫酸也是只表现出氧化性。
H2S+H2SO4(浓)==S↓+SO2↑+2H2O
2HBr+H2SO4(浓)==Br2↑+SO2↑+2H2O
2HI+H2SO4(浓)==I2↓+SO2↑+2H2O
HCHO+H2SO4(浓)==HCOOH+H2O+SO2↑
希望我能帮助你解疑释惑。
㈣ 治理盐酸雾废气时,宜采用什么方法
您好,国标去年8月1号发布了三个新标准:HJ 544-2016《固定污染源废气 硫酸雾的测定?离子色谱法》HJ549-2016《环境空气和废气?氯化氢的测定?离子色谱法》HJ548-2016《环境空气和废气氯化氢的测定硝酸银容量法》,其中关于固定污染源硫酸雾检测采样的是一个,环境和固定污染源即废气中氯化氢(含湿量大的烟气中叫盐酸雾)检测的吧标准有2个,其中都是要求,采样枪全程加热,基本用的都是冲级瓶吸收法来采集,另外值得注意的是,关于废气氯化氢的采样有两种模式,一种是烟气采样,即在烟气含湿量较低的情况下,只需要用烟气采样器,配合氯化氢采样管从烟道里将含有氯化氢的烟气采集出来。假如是烟气含湿量较大的情况,就要用烟尘采样器配合烟尘采样管将含湿量较大的烟气从烟道里抽出,然后在烟尘采样枪后端,配合烟气采样器或环境大气采样器,从烟尘取样枪里把烟气抽取出来,经冲击式吸收瓶吸收,回化验室分析。
硫酸雾采样枪与盐酸雾采样枪都需要全程加热,温度控制在120左右,采样管材质最好是用钛合金管做采样管路,连接管用氟胶材质的,这样才能有效防止管壁对气体的吸附。如果想了解产品的信息,您可以私信我,真心回答问题,字字都是手敲,。
㈤ 有谁知道硫酸雾的测定方法及原理
先采样再分析。可参阅《气体污染源监测分析方法》之类的参考书。
㈥ 无组织硫酸雾的测定方法
固定污染源废气 硫酸雾测定 离子色谱法(暂行)HJ 544-2009里面包含有组织和无组织的测定方法
㈦ 硫酸雾怎样采样
用滤膜采样的 采掘现场含尘空气中粉尘浓度的高低与产尘的方式、产尘的物理条件、产尘环境的气象条件等因素有关,特别是近年来对粉尘粒子理化性质和在此条件下 运动轨迹的不断认识,所以在某一尘云内粉尘浓度的变化都不能只用某一固定静止的数量
㈧ 硫酸的合成方法
先将硫黄或黄铁矿在空气中燃烧或焙烧,以得到二氧化硫气体.将二氧化硫氧化为三氧化硫是生产硫酸的关键,其反应为:2SO2+O2→2SO3
这个反应在室温和没有催化剂存在时,实际上不能进行.根据二氧化硫转化成三氧化硫途径的不同,制造硫酸的方法可分为接触法和硝化法.接触法是用负载在硅藻土上的含氧化钾或硫酸钾(助催剂)的五氧化二钒V2O5作催化剂,将二氧化硫转化成三氧化硫.硝化法是用氮的氧化物作递氧剂,把二氧化硫氧化成三氧化硫:
SO2+N2O3+H2O→H2SO4+2NO
根据所采用设备的不同,硝化法又分为铅室法和塔式法,现在铅室法巳被淘汰;塔式法生产的硫酸浓度只有76%;而接触法可以生产浓度98%以上的硫酸;采用最多.
接触法生产工艺:接触法的基本原理是应用固体催化剂,以空气中的氧直接氧化二氧化硫.其生产过程通常分为二氧化硫的制备、二氧化硫的转化和三氧化硫的吸收三部分.
二氧化硫的制备和净化: 以硫铁矿等其他原料制成的原料气,含有矿尘、氧化砷、二氧化硒、氟化氢、氯化氢等杂质,需经过净化,使原料气质量符合转化的要求.为此,经回收余热的原料气,先通过干式净化设备(旋风除尘器、静电除尘器)除去绝大部分矿尘,然后再由湿法净化系统进行净化.
经过净化的原料气,被水蒸气所饱和,通过喷淋93%硫酸的填料干燥塔,将其中水分含量降至0.1g/m3以下.
二氧化硫的转化:二氧化硫于转化器中,在钒催化剂存在下进行催化氧化:
SO2+(1/2)O2 SO3 ΔH=-99.0kJ
钒催化剂是典型的液相负载型催化剂,它以五氧化二钒为主要活性组分,碱金属氧化物为助催化剂,硅藻土为催化剂载体,有时还加入某些金属或非金属氧化物,以满足强度和活性的特殊需要.通常制成直径4~6mm、长5~15mm柱状颗粒.近年来,丹麦、美国和中国相继开发了球状、环状催化剂,以降低催化床阻力,减少能耗.
钒催化剂须在某一温度以上才能有效地发挥催化作用,此温度称为起燃温度,通常略高于400℃.近年来,研制成功的低温活性型钒催化剂,其起燃温度降低到370℃左右,因而提高了二氧化硫转化率.转化器进口的原料气温度保持在钒催化剂的起燃温度之上,通常为410~440℃.
由于原料气经过湿法净化系统后降温至40℃左右,所以必须通过换热器,以转化反应后的热气体间接加热至反应所需温度,再进入转化器.二氧化硫经氧化反应放出的热量,使催化剂层温度升高,二氧化硫平衡转化率随之降低,如温度超过650℃,将使催化剂损坏.为此,将转化器分成3~5层,层间进行间接或直接冷却,使每一催化剂层保持适宜反应温度,以同时获得较高的转化率和较快的反应速度.
现代硫酸生产用的两次转化工艺,是使经过两层或三层催化剂的气体,先进入中间吸收塔,吸收掉生成的三氧化硫,余气再次加热后,通过后面的催化剂层,进行第二次转化,然后进入最终吸收塔再次吸收.由于中间吸收移除了反应生成物,提高了第二次转化的转化率,故其总转化率可达99.5%以上,部分老厂仍采用传统的一次转化工艺,即气体一次通过全部催化剂层,其总转化率最高仅为98%左右.
三氧化硫的吸收:转化工序生成的三氧化硫经冷却后在填料吸收塔中被吸收.吸收反应虽然是三氧化硫与水的结合,即:
SO3+H2O→H2SO4 ΔH=-132.5kJ
但不能用水进行吸收,否则将形成大量酸雾.工业上采用98.3%硫酸作吸收剂,因其液面上水、三氧化硫和硫酸的总蒸气压最低,故吸收效率最高.出吸收塔的硫酸浓度因吸收三氧化硫而升高,须向98.3%硫酸吸收塔循环槽中加水并在干燥塔与吸收塔间相互串酸,以保持各塔酸浓度恒定.成品酸由各塔循环系统引出.
吸收塔和干燥塔顶设有金属丝网除沫器或玻璃纤维除雾器,以除去气流中夹带的硫酸雾沫,保护设备,防止环境污染.两次转化工艺的最终吸收塔出口尾气中的二氧化硫浓度小于500×10-6,尾气可直接排入大气;而一次转化工艺的吸收塔尾气中的二氧化硫浓度高达2000×10-6~3000×10-6,故须设置尾气处理工序,以使排气符合环境保护法规.氨水吸收法是应用最广的尾气处理方法.
㈨ 酸雨的防治措施
防治措施
1.开发新能源,如氢能,太阳能,水能,潮汐能,地热能等。
2.使用燃煤脱硫技术,减少二氧化硫排放。
3.工业生产排放气体处理后再排放。
4.少开车,多乘坐公共交通工具出行。
5.使用天然气等较清洁能源,少用煤
(9)硫酸雾分析方法三连球扩展阅读:
危害:
1,酸雨可导致土壤酸化。
土壤中含有大量铝的氢氧化物,土壤酸化后,可加速土壤中含铝的原生和次生矿物风化而释放大量铝离子,形成植物可吸收的形态铝化合物。植物长期和过量的吸收铝,会中毒,甚至死亡。
2,酸雨尚能加速土壤矿物质营养元素的流失;在酸雨的作用下,土壤中的营养元素钾、钠、钙、镁会流失出来,并随着雨水被淋溶掉。
所以长期的酸雨会使土壤中大量的营养元素被淋失,造成土壤中营养元素的严重不足,从而使土壤变得贫瘠。改变土壤结构,导致土壤贫瘠化,影响植物正常发育。
此外,酸雨能使土壤中的铝从稳定态中释放出来,使活性铝的增加而有机络合态铝减少。土壤中活性铝的增加能严重地抑制林木的生长;
3,酸雨还能诱发植物病虫害,使农作物大幅度减产,特别是小麦,在酸雨影响下,可减产 13% 至 34%。大豆、蔬菜也容易受酸雨危害,导致蛋白质含量和产量下降。
4,酸雨对森林的影响在很大程度上是通过对土壤的物理化学性质的恶化作用造成的。
5,酸雨可抑制某些土壤微生物的繁殖,降低酶活性,土壤中的固氮菌、细菌和放线菌均会明显受到酸雨的抑制。
6,酸雨能使非金属建筑材料(混凝土、砂浆和灰砂砖)表面硬化水泥溶解,出现空洞和裂缝,导致强度降低,从而损坏建筑物。建筑材料变脏, 变黑, 影响城市市容质量和城市景观, 被人们称之为 “黑壳”效应。
7,酸雨危害是多方面的,包括对人体健康、生态系统和建筑设施都有直接和潜在的危害。酸雨可使儿童免疫功能下降,慢性咽炎、支气管哮喘发病率增加,同时可使老人眼部、呼吸道患病率增加。
参考资料:网络----酸雨
㈩ 硫酸型酸雨以雾的形式出现算硫酸雾吗
硫酸雾 [1] 也叫酸雾。通常指大量漂浮的硫酸微粒形成的烟雾,由矿物燃料燃烧或矿物冶炼、硫酸产生等过程中排放的含硫氧化物废气造成,是一种大气污染现象。
硫酸雾一般指空气中直径为3μm以下的硫酸微粒所形成的雾。是大气中的二次污染物之一。化石燃料(煤和石油等)燃烧、硫酸生产和使用过程以及机动车辆排出的废气、烟气等是环境中硫酸雾的重要来源。废气中的二氧化硫在大气中容易氧化成三氧化硫,而三氧化硫有很强的吸湿性,与空气中的水汽结合。即生成硫酸雾。当空气的相对湿度为50%时,约有20%的二氧化硫生成硫酸。当相对湿度为90%时,则有60%生成硫酸。空气湿度愈大,形成的硫酸雾愈多。其毒性比二氧化硫约高10倍,对生态环境、人体健康及金属、建筑材料等都有较大的危害 [1] 。