A. 多元线性回归分析的优缺点
一、多元线性回归分析的优点:
1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。
3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。
二、多元线性回归分析的缺点
有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。
(1)基于因子分析的多元线性回归方法扩展阅读
社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归 。
多元线性回归与一元线性回归类似,可以用最小二乘法估计模型参数,也需对模型及模型参数进行统计检验 。
选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。
Matlab、spss、SAS等软件都是进行多元线性回归的常用软件。
B. 怎么通过因子分析法后的将多个指标综合为一个因变量,怎么和几个自变量做回归分析,谢谢,
因子分析
1输入数据。
2点Analyze 下拉菜单,选Data Rection 下的Factor 。
3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。
4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。
5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。
6单击主对话框中的OK 按钮,输出结果。
多元线性回归
1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。
3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5.选项里面至少选择95%CI。
点击ok。
C. 多元线性回归分析有什么作用通常可以得到那些结果
多元线性回归分析通过标准的统计方法可以计算出唯一的结果。多元线性回归分析的作用:
1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。
3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。
多元线性回归分析自变量的选择:
1、自变量对因变量必须有显着的影响,并呈密切的线性相关;
2、自变量与因变量之间的线性相关必须是真实的,而不是形式上的;
3、自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;
4、自变量应具有完整的统计数据,其预测值容易确定。
D. 简述多元线性回归分析的步骤是什么
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
1、普通最小二乘法(Ordinary Least Square, OLS)
普通最小二乘法通过最小化误差的平方和寻找最佳函数。
多元线性回归
其中,Ω是残差项的协方差矩阵。
E. 因子分析后做多元线性回归分析,因变量应该怎样计算
一般来说,因子分析所形成的因子都是自变量,因为因子分析所得到的因子地位是相同的,不应该做因子间的因果关系分析,而应该做这些因子对其他变量的影响或被其他变量所影响.假设因子分析所得到的因子为a1 a2 ……an,那么,需要引入a系列因子之外的其他变量(假设为b系列),即a系列与b系列因子之间才能做回归分析.
就你的题目来看,你的研究应该是因子分析所得到的各个因子为自变量,其他“外部”的因子为因变量.
(以上有调查问卷SPSS与结构方程模型Amos统计分析专业人士 南心网提供)
F. 因子分析后如何做线性回归分析自变量和因变量怎么取
因变量和自变量来自于理论假设,而不是统计结果。同一个因子分析结果,自变量和因变量可以互换,关键是您假设哪个变量影响另一个变量,被影响者是因变量,影响者就是因变量。(南心网 SPSS因子分析)
G. 知道因子得分怎样做多元线性回归分析
明确好自变量和因变量就行,多个变量预测一个变量,此时,用来预测的变量就是自变量,被预测的就是因变量。
H. 如何用SPSS实现多个因变量的多元线性回归分析
在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型:
其中:b0是回归常数;bk(k=1,2,3,…,n)是回归参数;e是随机误差。
多元回归在病虫预报中的应用实例:
某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。分级别数值列成表2-1。
预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。
预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。