‘壹’ 从特殊到一般的归纳法
归纳推理是由部分到整体、特殊到一般的推理
演绎推理是由一般到特殊的推理
类比推理是由特殊到特殊的推理
分析法是一种直接证明法
|z+2-2i|=1表示复平面上的点到(-2,2)的距离为1的圆,|z-2-2i|就是圆上的点,到(2,2)的距离的最小值,就是圆心到(2,2)的距离减去半径,即:|2-(-2)|-1=3。
归纳推理
离不开演绎推理。其一,为了提高归纳推理的可靠程度,需要运用已有的理论知识,对归纳推理的个别性前提进行分析,把握其中的因果性,必然性,这就要用到演绎推理。其二,归纳推理依靠演绎推理来验证自己的结论。
例如,俄国化学家门捷列夫通过归纳发现元素周期律,指出,元素的性质随元素原子量的增加而呈周期性变化。后用演绎推理发现,原来测量的一些元素的原子量是错的。
‘贰’ 逻辑推理技巧有哪些
所谓逻辑推理技巧,就是如何正确运用概念、判断、推理等思维形式,把话说得更准确、更清楚的一种技巧。逻辑推理技巧在口语表达中应用十分广泛,有的人说话所以具有很强的说服力,就是因为他掌握和运用了一定的逻辑推理技巧。
明确概念的内涵和外延。
任何一个真实反映现实的概念都具有内涵和外延这两种基本性质。概念的内涵是概念所反映的对象的本质属性,亦即概念的含义。概念的外延是概念所反映的那一对象或那一类对象的总和,即通常所说的概念的适用范围。如“劳动”这个概念的内涵是:人们使用生产工具以改变自然物质使之适合自己需要的有目的的活动。外延是:指工业劳动、农业劳动、服务性劳动及家庭劳动等一切体力劳动和脑力劳动。
在口语表达中正确运用概念要注意以下几点:
(1)揭示概念的本质属性。这就要求给事物下个科学的定义,这个定义应是严谨的、无懈可击的,否则观点站不住脚,容易被对方反驳。古代希腊哲学家苏格拉底曾经说过:“人是有两条腿的动物。”有人指着一只鸡反问:“这是人吗?”苏格拉底发现给人下的定义有问题,又补充说:“人是有两条腿而无羽毛的动物。”那人又反驳道:“这么说来,拔去羽毛的鸡就是人了。”苏格拉底再也无法回答。正是由于苏格拉底给人下的定义不科学,因而才遭到了别人的反驳而无言以对。“人是有两条腿的动物”定义过宽;“人是有两条腿而无羽毛的动物”,没有揭示出“人”的本质属性。反驳的人正是抓住这一点,进行了驳斥。
(2)涉及两个或两个以上概念时要明确概念之间的关系。从外延方面考虑,概念之间的关系主要有四种:
第一,全同关系。这种关系就是两个或两个以上概念的外延完全相同的关系。如“北京”和“中国首都”。
第二,交叉关系。这种关系就是两个或两个以上概念的内涵不同,而外延有部分重合的关系。如“青年”和“企业家”这两个概念就有交叉,有些青年是企业家,有些不是;也有些企业家是青年,有些企业家不是青年。
第三,从属关系。这种关系就是在两个概念中,一个概念被另一个概念的外延全部包含的关系。其中外延宽的那个概念叫属概念,外延窄的那个概念叫种概念。在说话中,属概念和种概念一般不能并列使用,否则就犯了逻辑错误。例如:我们这次展销会,不仅接待国内和本市的用户,还欢迎世界各地贸易界人士光临。这里,“国内的用户”和“本市的用户”是属种关系的概念,并列使用造成了语意重迭、含混不清。
第四,并列关系。这种关系指两个概念的外延互相排斥的关系。如“发光物体”与“不发光物体”,“商品”和“非商品”,“马”和“非马”等。
(3)由一个概念上升到另一个概念,程度要适当。要对行为的动机和目的作实事求是的分析,不能扣大帽子,不能无限上纲。如有一位青年工人搞技术革新,将一台钻孔机拆坏了。车间主任批评他:“你这是破坏集体财产、破坏社会主义建设。”这种批评就不是实事求是的,让人无法接受。
(4)不能以局部代替整体,犯以偏概全的错误。如某厂有一位团员迟到了几次,有人提出批评说:“团员违反劳动纪律,这个共青团支部还能称为先进青年的组织吗?”这便是以偏概全,显然不符合逻辑,也不利于问题的解决。
运用判断必须真实恰当。
具体来说,运用判断要注意以下两个方面:
(1)用事和理来检验判断的真假。客观实际是检验判断真实和虚假的标准。真实的判断是符合客观事实的判断,虚假的判断就是不符合客观事实的判断。例如:
1967年在一次政治局碰头会上,张春桥认为上海的形势一派大好,并天花乱坠地进行介绍。李先念反驳道:“你那个大好形势我看不到,我只晓得上海的存粮只够吃7天了。搞到最后,大家一起饿饭。”谷牧拿出了一系列统计数字,补充指出:“上海有一半的工厂停工,铁路半瘫痪,港口堵塞,这样乱下去,上海这个工业中心就要垮了!”
康生隔着会议桌,用多疑的目光盯着谷牧:“你说的都没有夸大吗?”
谷牧一句话就把康生挡了回去:“你是要我缩小吗?”
既是事实,无需夸大,也无法缩小。事实有力地说明了张春桥的判断是虚假的。
(2)防止判断自相矛盾。判断或是肯定,或是否定,都是不变的。不能前面肯定,后面否定,否则就是“自相矛盾”。有这样一个故事:一位青年对爱迪生说:“我有一个伟大的理想,要发明一种万能溶解剂——它能溶解一切物质。”爱迪生回答说:“那么,你打算把它放在什么容器里呢?”爱迪生抓住了对方自相矛盾的地方。既然万能溶解剂能溶解一切物质,它当然能溶解掉装它的容器,那么这种溶解剂又何处安身呢?
推理必须合乎逻辑。
推理,是由一个或几个已知判断推出一个新判断的思维形式。人们说话,不能老是堆积概念,也不能老是简单地判断事物是什么,不是什么,尤其是演讲或辩论之类的系统讲话,需要把一些有某种关系的判断联系起来,以反映事物之间的各种复杂关系,这就离不开推理了。
推理有正面推理和反面推理两种方法。正面推理包括:
①演绎推理。这是由一般到个别的推理方法。其具体做法是:首先提出一个正确的观点作为大前提,然后提出一个与此相关的要论证的问题作为小前提,再通过引申发挥,使两者充分地统一起来,得出结论,使论点成立。
②归纳推理。这是由个别到一般的推理方法,即从特殊的事例推导出一般原理、原则。归纳推理分为完全归纳推理和不完全归纳推理两种。完全归纳推理是由一类对象的每个分子都具有某种属性而推知该类对象都具有某种属性的推理。不完全归纳推理是根据某类对象的部分分子具有某种属性,从而推出该类对象的全体都具有某种属性的归纳推理。
③类比推理。这种推理就是一种由个别到个别,或者由一般到一般的推理。它是根据两个(或两类)事物的某些属性的相同或相似,而推论出它们其他属性也可能相同或相似的一种间接推理形式。这样得出来的结论虽然是或然性的,但它是根据事物的某种相同点用已知的事物来说明未知的事物,所以能起到启发联想和触类旁通的作用。因此,作为一种逻辑技巧,类比推理在说话艺术中得到了广泛的运用。
反面推理包括:
①反证法。通过论证与对方论题相反的论题是正确的,从而推翻对方论题的一种逻辑论证方法,叫反证法。反之亦然。
②归谬法。按照逻辑规律,任何推理,必须有正确的前提,才能推出正确的结论。而“归谬法”却违反“前提必须正确”这一规律,故意假设对手的错误观点是正确的,并以此假设为前提,一步一步进行推论,引导出一个荒谬的结论,从而使对手的论点不攻自破,达到驳斥对手的目的。
‘叁’ 特殊到一般的数学思想是什么归纳
从特殊到一般的数学思想是演绎推理,从一般到特殊才是归纳,这两者都是最基本的数学思想方法。
‘肆’ 归纳推理和演绎推理
归纳推理是一种由个别到一般的推理。由一定程度的关于个别事物的观点过渡到范围较大的观点,由特殊具体的事例推导出一般原理、原则的解释方法。
演绎推理(Dective Reasoning)是由一般到特殊的推理方法。与“归纳法”相对。推论前提与结论之间的联系是必然的,是一种确实性推理。运用此法研究问题,首先要正确掌握作为指导思想或依据的一般原理、原则;
其次要全面了解所要研究的课题、问题的实际情况和特殊性;然后才能推导出一般原理用于特定事物的结论。
(4)从特殊到一般的推理方法是什么扩展阅读:
归纳推理和演绎推理既有区别、又有联系。
区别
1,思维进程不同。归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程。
演绎推理不是从个别到一般的推理,但也不仅仅是从一般到个别的推理:演绎推理可以从一般到一般,比如从“一切非正义战争都是不得人心的“推出“一切非正义战争都不是得人心的“;
可以从个别到个别,比如从“罗吉尔·培根不是那个建立新的归纳逻辑学说的培根“推出“那个建立新的归纳逻辑学说的培根不是罗吉尔·培根“;
可以从个别和一般到个别,比如从“这个物体不导电“和“所有的金属都导电“推出“这个物体不是金属“;
还可以从个别和一般到一般,比如从“你能够胜任这项工作“和“有志者事竟成或者你不能够胜任这项工作“推出“有志者事竟成“。
在这里,应当特别注意的是,归纳推理中的完全归纳推理其思维进程既是从个别到一般,又是必然地得出。
2,对前提真实性的要求不同。演绎推理要求大前提,小前提必须为真。归纳推理则没有这个要求。
3,结论所断定的知识范围不同。演绎推理的结论没有超出前提所断定的知识范围。归纳推理除了完全归纳推理,结论都超出了前提所断定的知识范围。
4,前提与结论间的联系程度不同。演绎推理的前提与结论间的联系是必然的,也就是说,前提真实,推理形式正确,结论就必然是真的。
归纳推理除了完全归纳推理前提与结论间的联系是必然的外,前提和结论间的联系都是或然的,也就是说,前提真实,推理形式也正确,但不能必然推出真实的结论。
联系
1,演绎推理如果要以一般性知识为前提,(演绎推理未必都要以一般性知识为前提)则通常要依赖归纳推理来提供一般性知识。
2,归纳推理离不开演绎推理。其一,为了提高归纳推理的可靠程度,需要运用已有的理论知识,对归纳推理的个别性前提进行分析,把握其中的因果性,必然性,这就要用到演绎推理。
其二,归纳推理依靠演绎推理来验证自己的结论。例如,俄国化学家门捷列夫通过归纳发现元素周期律,指出,元素的性质随元素原子量的增加而呈周期性变化。
后用演绎推理发现,原来测量的一些元素的原子量是错的。于是,他重新安排了它们在周期表中的位置,并预言了一些尚未发现的元素,指出周期表中应留出空白位置给未发现的新元素。
逻辑史上曾出现两个相互对立的派别——全归纳派和全演绎派。全归纳派把归纳说成唯一科学的思维方法,否认演绎在认识中的作用。
全演绎派把演绎说成是唯一科学的思维方法,否认归纳的意义。这两种观点都是片面的。正如恩格斯所说:“归纳和演绎,正如分析和综合一样,是必然相互联系着的。
不应当牺牲一个而把另一个捧到天上去,应当把每一个都用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。“
参考资料:网络----演绎推理 网络---归纳推理
‘伍’ 有哪些逻辑推理的方法
1、三段论
是由两个含有一个共同项的性质判断作前提,得出一个新的性质判断为结论的演绎推理。三段论是演绎推理的一般模式,包含三个部分:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况作出判断。
2、假言推理
是根据假言命题的逻辑性质进行的推理。分为充分条件假言推理,必要条件假言推理和充分必要条件假言推理三种。
3、选言推理
是至少有一个前提为选言命题,并根据选言命题各选言支之间的关系而进行推演的演绎推理。一般由两个前提和一个结论所组成。
根据组成前提的命题是否皆为选言命题,可分为纯粹选言推理和选言直言推理。按一般习惯用法。选言推理主要指选言直言推理。根据选言前提各选言支之间的关系是否为相容关系,可分为相容的选言推理和不相容的选言推理。
相关定义:
①演绎推理是从一般到特殊的推理;
②它是前提蕴涵结论的推理;
③它是前提和结论之间具有必然联系的推理。
④演绎推理就是前提与结论之间具有充分条件或充分必要条件联系的必然性推理。
演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。这是因为演绎推理保证推理有效的根据并不在于它的内容,而在于它的形式。演绎推理的最典型、最重要的应用,通常存在于逻辑和数学证明中。
‘陆’ 从特殊到一般的推理是
1,BE
2,交流
3,DE
4,ABE(E不知道选)
5,AC
6,E(不知道)
7,AB
8,AB
9,DE
10,BC
‘柒’ 逻辑学中推理的方法有哪几种
逻辑学中推理的方法有:
1、类比推理:
在逻辑学上,类比推理是根据两个或两类对象在某些属性上相同,推断出它们在另外的属性上(这一属性已为类比的一个对象所具有,另一个类比的对象那里尚未发现)也相同的一种推理。
2、归纳推理:
归纳推理是一种由个别到一般的推理。由一定程度的关于个别事物的观点过渡到范围较大的观点,由特殊具体的事例推导出一般原理、原则的解释方法。
自然界和社会中的一般,都存在于个别、特殊之中,并通过个别而存在。一般都存在于具体的对象和现象之中,因此,只有通过认识个别,才能认识一般。
3、演绎推理:
演绎推理是由一般到特殊的推理方法。与“归纳法”相对。推论前提与结论之间的联系是必然的,是一种确实性推理。
运用此法研究问题,首先要正确掌握作为指导思想或依据的一般原理、原则;其次要全面了解所要研究的课题、问题的实际情况和特殊性;然后才能推导出一般原理用于特定事物的结论。
(7)从特殊到一般的推理方法是什么扩展阅读:
演绎推理有三段论、假言推理、选言推理、关系推理等形式。
1、三段论
是由两个含有一个共同项的性质判断作前提,得出一个新的性质判断为结论的演绎推理。三段论是演绎推理的一般模式,包含三个部分:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况作出判断。
2、假言推理
是以假言判断为前提的推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
3、选言推理
是以选言判断为前提的推理。选言推理分为相容的选言推理和不相容的选言推理两种。
⑴相容的选言推理的基本原则是:大前提是一个相容的选言判断,小前提否定了其中一个(或一部分)选言支,结论就要肯定剩下的一个选言支。
⑵不相容的选言推理的基本原则是:大前提是个不相容的选言判断,小前提肯定其中的一个选言支,结论则否定其它选言支;小前提否定除其中一个以外的选言支,结论则肯定剩下的那个选言支。例如下面的两个例子:
4、关系推理
是前提中至少有一个是关系命题的推理。
‘捌’ 由个别到一般的论证方法是
由个别到一般的论证方法是归纳推理。
归纳推理中的完全归纳推理其思维进程是从个别到一般