A. 如何利用轴承振动信号的有效值和峰峰值来诊断轴承的故障
有效值适用于磨损类振动幅值随时间缓慢变化的故障诊断
峰峰值适用于点蚀损伤类具有瞬时冲击的故障诊断,且转速较低的场合
此外,峭度和波峰因子对于诊断轴承故障比较有效。
B. 如何有效检测轴承振动
然而,SKF轴承缺陷的唯一特性可以用有效的振动分析方法进行检测和分析。引起SKF轴承故障的特殊频串取决于故障轴承的几何尺寸以及转速,所需要的轴承的几何尺寸通常是由生产厂家提供的。采用计算机程序计算所需要的频率,并给出相应的轴承参数和转速。应当注意,相同型号的轴承参数可随生产厂家的不同而发生改变。 SKF轴承故障早期诊断的主要问题是引起的低振平,并常常被较高的振平所淹没。如果采用一个振动表进行监测,则低振平就不能被检测,不可预测的故障就会出现。一个很好的解决办法就是定期使用动态信号分析仪对临界工作状态的机械进行监测。因为动态信号分析仪的高分辨率和动态范围能显示出得成分为较高振平幅度的千分之一。早期检测设备故障的其它益处是能说明故障引起的原因,因为设备故障到了后期就会出现擦伤,直到很明显。固定的机器在过分的振动下引起剥蚀而被替换就是一个例子,如果已了解引起故障的原因,那些慢性故障就可以确定。SKF轴承的振动频率能够很好的传送到机器外壳上(因为轴承很硬),测量的最好方法是采用加速度计或速度传感器。由于轴承是提供轴的支撑,对于判断振动情况,对轴承的测量常常可以提供足够的灵敏度(因为机器在这个方位上通常很灵活)。目前,测量轴承振动的传感器已经有了新的发展,包括高灵敏度的位移传感器,这种传感器可以测量轴承外圈实际缺陷,灵敏度是很高的,并能防止阻抗变化的影响,但安装需要拆洗机器。所以在安装使用之前一定要注意。
C. 轴承异响监听
新的轴承装上后发响的情况,或者轴承使用三两年的也会遇到轴承发响,却毫无头绪,犹如热锅上的蚂蚁般,焦急、烦恼,不懂轴承发响原因,不知道该如何去检测,更找不到处理的办法相信大家定都遇到过。这时候我们想到的定是退货,但轴承发响定是产品的质量原因吗?今天普瑞森就给大家分享些轴承异响的原因、检测方法、存放方法,希望能帮到大家。
、正常运转的轴承声音
1、轴承若处于良好的连转状态会发出低低的呜呜或嗡嗡声音。若是发出尖锐的嘶嘶音,吱吱音及其它不规则的声音,经常表示轴承处于不良的连转状况。尖锐的吱吱噪音可能是由于不适当的润滑所造成的。不适当的轴承间隙也会造成金属声。
2、轴承外圈轨道上的凹痕会引起振动,并造成平顺清脆的声音。
3、若是有间歇性的噪音,则表示滚动件可能受损。此声音是发生在当受损表面被辗压过时,轴承内若有污染物常会引起嘶嘶音。严重的轴承损坏会产生不规则并且巨大的噪音。
4、若是由于安装时所造成的敲击伤痕也会产生噪音,此噪音会随着轴承转速的高低而不同。
二、异常轴承响声
<table cellspacing="0" cellpadding="0" font-size:17px;text-align:justify;"="" align="center" border="1" bordercolor="#333333" style="margin: 0px 0px 10px; padding: 0px; border-width: 1px 0px 0px 1px; border-spacing: 0px; border-collapse: collapse; background-color: rgb(255, 255, 255); border-top-style: solid; border-top-color: rgb(0, 0, 0); border-left-style: solid; border-left-color: rgb(0, 0, 0); width: 677px; font-family: 微软雅黑; font-size: 15px; white-space: normal; color: rgb(62, 62, 62);">
声音描述
征
发生原因
咋-咋响
嘎嘎 音质不随回转速度变化而变化(灰尘/异物)
音质随回转速度变化而变化(划伤)
灰尘/异物
轨道面,滚珠,滚子表面粗糙
轨道面,滚珠,滚子表面划伤
呲啦 小型轴承
轨道面,滚珠,滚子表面粗糙
呲啦—呲啦 断断续续,且有规则的发生
与密封圈部相接触
与保持器及密封盖接触
呜呜响
嘀嘀
轰鸣响 因回转速度变化,大小高低均改变。随定速度回转而声音变大。也有近似警报或笛音的时候。
共振,配合不良(轴形状不良)
轨道面变形
轨道面,滚珠,滚子波纹(大型轴承如出现轻度音的话,则属正常)
嘎吱嘎吱 手动旋转时的感觉
轨道面划伤(规则的)
滚珠,滚子的划伤(不规则)
灰尘/异物,轨道面变形(部分间隙为负)
隆隆响 大型轴承高速时出现连续音小型轴承
轨道面,滚珠,滚子表面划伤
呜—
嗡— 切断电源时瞬间停止
马达电磁音
吱啦吱啦 不规则发生(非回转速度变化而变化),
主要为小型轴承
混入灰尘/异物
叮当叮当响 圆锥滚子轴承规则且高速的连续音大型轴承小型轴承
如保持器声音清澈则为正常
如在低温时润滑脂由不适→柔和则为良好
因保持器内部磨耗,润滑不足,轴承负荷不足的运转。
唏啦哗啦 低速时较明显
高速时呈连续音
保持器内部的冲击音,润滑不足。减小内部间隙或预压后异音消失。
如是所有滚子的话,则发生滚子间的冲击音。
梆梆响 较大的金属冲击音
低速的薄壁大型轴承(TTB)等。
转动体撕裂音
轨道轮变形
吱吱响
咣咣声 主要是圆柱滚子轴承因回转速度变化而变化,声音大时可听到金属音。补充润滑油后,时会停止。
润滑油过稠
径向内部间隙过大
润滑油不足
摪摪声 金属间的咬合音
尖锐音
滚子轴承的滚子与挡边咬伤
内部间隙过小小
润滑油不足
呲啦 小型轴承发生的不规则声音
润滑油中的气泡破裂音
啪嚓啪嚓 不规则吱吱响
配合部分的打滑
安装面的吱响
钥匙等的吱响
总的来说音压过大
轨道面,滚子,滚珠表面粗糙
因摩擦使轨道面,滚子,滚珠变形
因摩擦使内部间隙过大
当然还有以下几种噪音出现
►大的金属噪音
原因1:异常负荷,对策:修正配合,研究轴承游隙,调整与负荷,修正外壳挡肩位置。
原因2:安装不良,对策:轴、外壳的加工精度,改善安装精度、安装方法。
原因3:润滑剂不足或不适合,对策:补充润滑剂,选择适当的润滑剂。
原因4:旋转零件有接触,对策:修改曲路密封的接触部分。
►规则噪声
原因1:由于异物造成滚动面产生压痕、锈蚀或伤痕,对策:更换轴承,清洗有关零件,改善密封装置,使用干净的润滑剂。
原因2:(钢渗碳后)表面变形,对策:更换轴承,注意其使用。
原因3:滚道面剥离,对策:更换轴承。
►不规则噪声
原因1:游隙过大,对策:研究配合及轴承游隙,修改预负荷量。
原因2:异物侵入,对策:研究更换轴承,清洗有关零件,改善密封装置,使用干净润滑剂。
原因3:球面伤、剥离,对策:更换轴承。
五、轴承的正确存放方法
1、保持原有包装,不得任意打开,如果发现包装损坏,须打开认真清洗,重新涂油包装。
2、贮藏室的相对湿度不能超过60%,温差不能过大,放在原包装中的轴承就可存放数年。密封轴承或带防尘罩的轴承,经长期存放后,轴承中填充的润滑脂的润滑性可能会降低。
3、贮藏室也应防震动和摇动。未存放在原包装中的轴承应妥善保存,严禁轴承与腐蚀性的东西放在起,防止受到腐蚀与污染。
4、大型滚动轴承存放时只能平放,内外圈的侧面 好部受到支撑。如果直立存放,由于内外圈和滚动部件较重,而内外圈壁相对较薄,可能会造成永 久变形。
D. 滚动轴承 振动(速度)测量方法标准
标准编号:GB/T 7813-2008
标准名称:滚动轴承 剖分立式轴承座 外形尺寸
标准状态:现行
英文标题:Rolling bearings - Split type plummer block housings - Boundary dimensions
替代情况:替代GB/T 7813-1998
实施日期:2008-8-1
颁布部门:中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会
内容简介:本标准规定了二螺柱和四螺柱剖分立式轴承座的外形尺寸。本标准适用于调心球轴承和调心滚子轴承,供制造厂设计和用户选型。
E. TIMKEN轴承滚动轴承的振动和温度进行检测的方法
1、美国TIMKEN埋刮板给煤机轴承的振动
滚动轴承振动对轴承的损伤很敏感,例如剥落、压痕、锈蚀、裂纹、磨损等直线振动筛都会在进口轴承振动测量中反映出来,所以,通过采用特殊的轴承振动测量器(频率分析器等)可测量出振动的大小,通过频率分不可推断出异常的具体情况。测得的数值因轴承的使用条件或传感器安装位置等而不同,因此需要事先对每台机器的测量值进行分析比较后确定判断标准。
2、滚动T三元超声波圆振筛IMKEN进口轴承的温度
板式给料机滚动轴承的温度,一般有轴承室外面的温度就可推测出来,如果利用油孔能直接测量轴承外圈温度,则更位合适。
通常,轴承的温度随着轴承运转开始慢慢上升,1-2小时后达到稳定状态。轴承的正常温度因机器的热容量,散热量,转惯性振动输送机速及负载而不同。如果润滑、安装部合适,则轴承温都会急骤上升,进口滚动轴承会出现异常高温,这时必须停止运转,采取必要的防范措施。
使用热感器可以随时监测轴承的工作温高效重型振动筛度,并实现温度超过规定值时自动报警或停止防止燃轴事故发生。
高温经常表示轴承已处于异常情况。高温也有害于轴承的润滑剂。有时轴承过热可归诸于轴承的润滑剂。若轴承在超过125℃的温度长期连转会降低轴承寿命。活化给煤机引起高温TIMKEN进口轴承的原因包括:润滑不足或过分润滑,润滑剂。内含有杂质,负载过大,轴承损环,间隙不足,及油封产生的高磨擦等等。
因此连续性的监测轴承温度是有必要的,无论是量测轴承本身或其它重要的零件。如果是在运转条件不变的情况下,任何的温度改变可表示已发生仓壁振动器故障。
美国TIMKEN轴承温度的定期量测可借助于温度计,例如skf数字型板式输送机温度计,可精确的测轴承温度并依℃或华氏温度定单位显示。
对于重要性的轴承,意谓着当其损坏时,会造成设备的停机,因此这类轴承最好应加装温度探测器。
正常情况下,进口轴承在刚润滑或再润滑过后会有自然的温度上升并且持续一或二天。
西安珺驰动力设备有限公司
F. 汽车轴承故障判断的几种方法
一、首先把轴承放入汽油中清洗,擦去残留在汽车轴承上的油泥和灰尘,凡是有锈迹的轴承都用金相砂纸轻轻擦拭磨光,直至用手摸无粗糙感为止。
二、用干碎布将清洗后的轴承抹干,再放入防锈油中浸泡。在此过程中,要将轴承完全地与防锈油接触,并不停转动轴承,这样才能使防锈油形成的油膜覆盖在轴承的表面,达到防锈的目的。
三、接下来用锂基脂均匀地涂在轴承的表面,包括内外圈、轮子、保持架。并且是边抹边转动汽车轴承,使黄油真正进入轴承内部,起到充分润滑作用。
四、最后一道工序是包装。为了节约成本,我们“变废为宝”,将仓库报废的水泥包装袋,裁剪成大小合适的包装袋,将轴承包紧、包好,标注好轴承的规格型号后放回货架上存放。
轴承元件的工作表面出现疲劳剥落、压痕或局部腐蚀时,轴承运行中会出现周期性的脉冲信号。这种周期性的信号可有安装在轴承座上的传感器(速度型或加速度型)来接收,通过对振动信号的分析来诊断汽车轴承的故障。
特点:振动诊断技术应用广泛;可实现在线监测;诊断快,诊断理论已成熟。
应用范围:特别适合旋转机械中轴承的故障监测。
轴承磨损颗粒与其工作状况有密切的联系。将带有磨损颗粒的润滑油通过一强磁场,在强磁场的作用下,磨粒按一定的规律沉淀在铁谱片上,铁谱片可在铁谱显微镜上作定性观察或在定量仪器上测试,据此判断轴承的工作状况。
特点:机器无需解体;投资低,效果好;能发现汽车轴承的早期疲劳失效;可做磨损机理研究。
应用范围:适用于用润滑油润滑的轴承的故障诊断,对于用脂润滑的轴承较困难。
三、油膜电阻诊断技术
润滑良好的轴承,由于油膜的作用,内、外圈之间有很大的电阻。故通过测量轴承内、外圈的电阻,可对轴承的异常作出判断。
特点:对不同的工况条件可使用同一评判标准。对表面剥落、压痕、裂纹等异常的诊断效果差。
应用范围:适用于旋转轴外露的场合。
四、光纤监测诊断技术
光纤监测是一种直接从汽车轴承套圈表面提取信号的诊断技术。用光导纤维束制成的位移传感器包含有发射光纤束和接收光纤束。光线由发射光纤束经过传感器端面与轴承套圈表面的间隙反射回来,由接收光纤束接收,经光电元件转换成电信号,通过对电信号的分析处理,可对轴承工况作出评估。
特点:光纤位移传感器灵敏度高;直接从汽车轴承表面提取信号,提高了信噪比;可直接反映滚动轴承的制
造质量、表面磨损程度、载荷、润滑和间隙情况。
应用范围:适用于可将传感器安装在轴承座内的机器。
G. 滚动轴承正常振动信号如何分析
大数据量高速采集进行频谱分析,频谱不包含滚动轴承的故障特征频率(内圈、外圈、保持架和滚动体),特别是不能有明显的轴频的边频成分。
H. 如何利用频谱进行振动分析(轴承和齿箱)
完整的程序
%写上标题
%设计低通滤波器:
[N,Wc]=buttord()
%估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc); %设计Butterworth低通滤波器
[h,f]=freqz(); %求数字低通滤波器的频率响应
figure(2); % 打开窗口2
subplot(221); %图形显示分割窗口
plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图
title(巴氏低通滤波器'');
grid; %绘制带网格的图像
sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数
subplot(222);
plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形
xlabel('时间 (seconds)');
ylabel('时间按幅度');
SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换
w= %新信号角频率
subplot(223);
plot()); %绘制叠加函数S经过低通滤波器以后的频谱图
title('低通滤波后的频谱图');
%设计高通滤波器
[N,Wc]=buttord()
%估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器
[h,f]=freqz(); %求数字高通滤波器的频率响应
figure(3);
subplot(221);
plot()); %绘制Butterworth高通滤波器的幅频响应图
title('巴氏高通滤波器');
grid; %绘制带网格的图像
sf=filter(); %叠加函数S经过高通滤波器以后的新函数
subplot(222);
plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形
xlabel('Time(seconds)');
ylabel('Time waveform');
w; %新信号角频率
subplot(223);
plot()); %绘制叠加函数S经过高通滤波器以后的频谱图
title('高通滤波后的频谱图');
%设计带通滤波器
[N,Wc]=buttord([)
%估算得到Butterworth带通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc); %设计Butterworth带通滤波器
[h,f]=freqz(); %求数字带通滤波器的频率响应
figure(4);
subplot(221);
plot(f,abs(h)); %绘制Butterworth带通滤波器的幅频响应图
title('butter bandpass filter');
grid; %绘制带网格的图像
sf=filter(a,b,s); %叠加函数S经过带通滤波器以后的新函数
subplot(222);
plot(t,sf); %绘制叠加函数S经过带通滤波器以后的时域图形
xlabel('Time(seconds)');
ylabel('Time waveform');
SF=fft(); %对叠加函数S经过带通滤波器以后的新函数进行256点的基—2快速傅立叶变换
w=( %新信号角频率
subplot(223);
plot(')); %绘制叠加函数S经过带通滤波器以后的频谱图
title('带通滤波后的频谱
I. 振动信号的分析方法有哪些
由于现代机械系统日益复杂化
、
大型化
,
振动信号采
集过程中
,
安装在机械系统外部的传感器所采集到的信号
实际上是多个振动源的混合
,
针对这一复杂情况
,
人们提
出了应用多元统计方法处理信号问题
,
其中常用的多元统
计分析方法包括
:
主分量分析
(
Principal
Component
Analy-
sis
,
PCA
)
、
独立分量分析
(
Independent
Component
Analy-
sis
,
ICA
)
、
核主分量分析
(
Kernel
Principal
Component
Anal-
ysis
,
KPCA
)
和
盲
源
分
离
(
Blind
Separation
of
Sources
,
BSS
J. 使用matlab对故障轴承振动信号去噪
% 将以下程序到matlab编辑器中运行,或直接在工作区运行即可
fs = 20e3; % 采样频率
fn = 3e3; % 固有频率
y0 = 5; % 位移常数
g = 0.1; % 阻尼系数
T = 0.01; % 重复周期
N = 4096; % 采样点数
NT = round(fs*T); % 单周期采样点数
t = 0:1/fs:(N-1)/fs; % 采样时刻
t0 = 0:1/fs:(NT-1)/fs; % 单周期采样时刻
K = ceil(N/NT)+1; % 重复次数
y = [];
for i = 1:K
y = [y,y0*exp(-g*2*pi*fn*t0).*sin(2*pi*fn*sqrt(1-g^2)*t0)];
end
y = y(1:N);
Yf = fft(y); % 频谱
figure(1)
plot(t,y);
axis([0,inf,-4,5])
title('轴承故障仿真信号时域波形图')
xlabel('Time(s)')
ylabel('Amplitude')
figure(2)
f = 0:fs/N:fs-fs/N;
plot(f/1e3,abs(Yf));
xlabel('Frequency(KHz)');
ylabel('\itY\rm(\itf\rm)')
title('轴承故障仿真信号幅度谱图')