‘壹’ 运用层次分析法进行系统评价时,大致经过哪些步骤
1.
构造判断矩阵,设计调查问卷
2.
进行问卷调查,获得判断矩阵
3.
进行判断矩阵的一致性检验,通过,则继续,否则,需要重新进行问卷调查等来获得判断矩阵
4.
使用判断矩阵计算权重,获得指标体系
以上是简要的概括,具体内容,也不是一句两句能说的清楚的,建议你去图书馆查阅一下相关的书籍。
‘贰’ 层次分析法和模糊综合评价法优缺点
层次分析法优缺点:
(一)优点
1. 系统性的分析方法:
层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
2. 简洁实用的决策方法:
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来。
3. 所需定量数据信息较少:
层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。
(二)缺点
1. 不能为决策提供新方案:
层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
2. 定量数据较少,定性成分多,不易令人信服:
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。
3. 指标过多时数据统计量大,且权重难以确定:
当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。
4. 特征值和特征向量的精确求法比较复杂:
在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。
模糊综合评价法优缺点:
1、模糊综合评价法的优点:
模糊评价通过精确的数字手段处理模糊的评价对象,能对蕴藏信息呈现模糊性的资料作出比较科学、合理、贴近实际的量化评价;
评价结果是一个矢量,而不是一个点值,包含的信息比较丰富,既可以比较准确的刻画被评价对象,又可以进一步加工,得到参考信息。
2、模糊综合评价法的缺点:
计算复杂,对指标权重矢量的确定主观性较强;
当指标集U较大,即指标集个数凡较大时,在权矢量和为1的条件约束下,相对隶属度权系数往往偏小,权矢量与模糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差,无法区分谁的隶属度更高,甚至造成评判失败,此时可用分层模糊评估法加以改进。
(2)评估方法层次分析法扩展阅读:
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
在运用层次分析法时,如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。为保证递阶层次结构的合理性,需把握以下原则:
1 分解简化问题时把握主要因素,不漏不多;
2 注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
层次分析法主要应用在安全科学和环境科学领域。在安全生产科学技术方面主要应用包括煤矿安全研究、危险化学品评价、油库安全评价、城市灾害应急能力研究以及交通安全评价等;在环境保护研究中的应用主要包括:
水安全评价、水质指标和环境保护措施研究、生态环境质量评价指标体系研究以及水生野生动物保护区污染源确定等。
除此之外,层次分析法更多的可以用于指导和解决个人生活中遇到的问题,比如说专业的选择、工作的选择以及买房的选择等,可以通过建立层次结构以及衡量指标,来理清工作思路和思考问题的层面。
为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:
1.评价因素(F):是指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。第二级评价因素可以设置下属的第三级评价因素(F3)。依此类推。
2.评价因素值(Fv):是指评价因素的具体值。例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):是指评价因素的优劣程度。评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):是指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数
5.权重(W):是指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。
6.加权平均评价值(Epw):是指加权后的平均评价值。
加权平均评价值(Epw)=平均评价值(Ep)×权重(W)。
7.综合评价值(Ez):是指同一级评价因素的加权平均评价值(Epw)之和。综合评价值也是对应的上一级评价。
‘叁’ 几种综合评价方法
摘要 您好,常用的综合评价方法:1.现有的统计方法:主要为多元统计方法,如多元回归、逐步回归分析、判别分析、因子分析、时间序列分析
‘肆’ 关于层次分析法
1、建立层次结构模型。在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。
2、构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。
3、计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。
4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵
将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。把各种所要考虑的因素放在适当的层次内。用层次结构图清晰地表达这些因素的关系。
〔例1〕 购物模型
某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:
〔例2〕 选拔干部模型
对三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型: 假设有三个干部候选人y1、y2 、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型
[编辑]
构造成对比较矩阵
比较第i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。设共有 n 个元素参与比较,则称为成对比较矩阵。
成对比较矩阵中aij的取值可参考 Satty 的提议,按下述标度进行赋值。aij在 1-9 及其倒数中间取值。
·aij = 1,元素i 与元素 j 对上一层次因素的重要性相同;
·aij = 3,元素i 比元素 j 略重要;
·aij = 5,元素i 比元素 j 重要;
·aij = 7, 元素 i 比元素 j 重要得多;
·aij = 9,元素i 比元素 j 的极其重要;
·aij = 2n,n=1,2,3,4,元素 i 与 j 的重要性介于aij = 2n − 1与aij = 2n + 1之间;
·,n=1,2,...,9, 当且仅当aji = n。
成对比较矩阵的特点:。(备注:当i=j时候,aij = 1)
对例2, 选拔干部考虑5个条件:品德x1,才能x2,资历x3,年龄x4,群众关系x5。某决策人用成对比较法,得到成对比较阵如下:
a14 = 5 表示品德与年龄重要性之比为5,即决策人认为品德比年龄重要。
[编辑]
作一致性检验
从理论上分析得到:如果A是完全一致的成对比较矩阵,应该有
但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。因此退而要求成对比较矩阵有一定的一致性,即可以允许成对比较矩阵存在一定程度的不一致性。
由分析可知,对完全一致的成对比较矩阵,其绝对值最大的特征值等于该矩阵的维数。对成对比较矩阵 的一致性要求,转化为要求: 的绝对值最大的特征值和该矩阵的维数相差不大。
检验成对比较矩阵A一致性的步骤如下:
·计算衡量一个成对比较矩阵A (n>1 阶方阵)不一致程度的指标CI:
RI是这样得到的:对于固定的n,随机构造成对比较阵A,其中aij是从1,2,…,9,1/2,1/3,…,1/9中随机抽取的. 这样的A是不一致的, 取充分大的子样得到A的最大特征值的平均值
n
1
2
3
4
5
6
7
8
9
RI
0
0
0.58
0.90
1.12
1.24
1.32
1.41
1.45
注解:
·从有关资料查出检验成对比较矩阵A 一致性的标准RI:RI称为平均随机一致性指标,它只与矩阵阶数n 有关。
·按下面公式计算成对比较阵A 的随机一致性比率 CR:
。
·判断方法如下: 当CR<0.1时,判定成对比较阵A 具有满意的一致性,或其不一致程度是可以接受的;否则就调整成对比较矩阵 A,直到达到满意的一致性为止。
例如对例2 的矩阵
计算得到,查得RI=1.12,
这说明A 不是一致阵,但 A 具有满意的一致性,A的不一致程度是可接受的。
此时A的最大特征值对应的特征向量为U=(-0.8409,-0.4658,-0.0951,-0.1733,-0.1920)。 这个向量也是问题所需要的。通常要将该向量标准化:使得它的各分量都大于零,各分量之和等于1。该特征向量标准化后变成U = (0.475,0.263,0.051,0.103,0.126)Z。经过标准化后这个向量称为权向量。这里它反映了决策者选拔干部时,视品德条件最重要,其次是才能,再次是群众关系,年龄因素,最后才是资历。各因素的相对重要性由权向量U的各分量所确定。
求A的特征值的方法,可以用 MATLAB 语句求A的特征值:〔Y,D〕=eig(A),D为成对比较阵 的特征值,Y的列为相应特征向量。
在实践中,可采用下述方法计算对成对比较阵A = (aij)的最大特征值λmax(A)和相应特征向量的近似值。
定义
,
可以近似地看作A的对应于最大特征值的特征向量。
计算
可以近似看作A的最大特征值。实践中可以由λ来判断矩阵A的一致性。
[编辑]
层次总排序及决策
现在来完整地解决例2 的问题,要从三个候选人y1,y2,y3中选一个总体上最适合上述五个条件的候选人。对此,对三个候选人y = y1,y2,y3分别比较他们的品德(x1),才能(x2),资历(x3),年龄(x4),群众关系(x5)。
先成对比较三个候选人的品德,得成对比较阵
经计算,B1的权向量
ωx1(Y) =
(0.082,0.244,0.674)z
故B1的不一致程度可接受。ωx1(Y)可以直观地视为各候选人在品德方面的得分。
类似地,分别比较三个候选人的才能,资历,年龄,群众关系得成对比较阵
通过计算知,相应的权向量为
它们可分别视为各候选人的才能分,资历分,年龄分和群众关系分。经检验知B2,B3,B4,B5的不一致程度均可接受。
最后计算各候选人的总得分。y1的总得分
从计算公式可知,y1的总得分ω(y1)实际上是y1各条件得分ωx1(y1),ωx2(y1),...,ωx5(y1),的加权平均, 权就是各条件的重要性。同理可得y2,Y3 的得分为
ωz(y2) =
0.243,ωz(y3) = 0.452
0.457
0.263
0.051
0.103
0.126
总得分
Y1
0.082
0.606
0.429
0.636
0.167
0.305
Y2
0.244
0.265
0.429
0.185
0.167
0.243
Y3
0.674
0.129
0.143
0.179
0.667
0.452
即排名:Y3 > Y1> Y2
比较后可得:候选人y3是第一干部人选。
[编辑]
层次分析法的用途举例
例如,某人准备选购一台电冰箱,他对市场上的6种不同类型的电冰箱进行了解后,在决定买那一款式时,往往不是直接拿电冰箱整体进行比较,因为存在许多不可比的因素,而是选取一些中间指标进行考察。例如电冰箱的容量、制冷级别、价格、型号、耗电量、外界信誉、售后服务等。然后再考虑各种型号冰箱在上述各中间标准下的优劣排序。借助这种排序,最终作出选购决策。在决策时,由于6种电冰箱对于每个中间标准的优劣排序一般是不一致的,因此,决策者首先要对这7个标准的重要度作一个估计,给出一种排序,然后把6种冰箱分别对每一个标准的排序权重找出来,最后把这些信息数据综合,得到针对总目标即购买电冰箱的排序权重。有了这个权重向量,决策就很容易了。
[编辑]
层次分析法应用的程序
运用AHP法进行决策时,需要经历以下4个步骤:
1、建立系统的递阶层次结构;
2、构造两两比较判断矩阵;(正互反矩阵)
3、针对某一个标准,计算各备选元素的权重;
4、计算当前一层元素关于总目标的排序权重。
5、进行一致性检验。
[编辑]
应用层次分析法的注意事项
如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。
为保证递阶层次结构的合理性,需把握以下原则:
1、分解简化问题时把握主要因素,不漏不多;
2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
[编辑]
层次分析法应用实例
1、建立递阶层次结构;
2、构造两两比较判断矩阵;(正互反矩阵)
对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵。
3、针对某一个标准,计算各备选元素的权重;
关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。
(1)几何平均法(根法)
计算判断矩阵A各行各个元素mi的乘积;
计算mi的n次方根;
对向量进行归一化处理;
该向量即为所求权重向量。
(2)规范列平均法(和法)
计算判断矩阵A各行各个元素mi的和;
将A的各行元素的和进行归一化;
该向量即为所求权重向量。
计算矩阵A的最大特征值?max
对于任意的i=1,2,…,n,式中为向量AW的第i个元素
(4)一致性检验
构造好判断矩阵后,需要根据判断矩阵计算针对某一准则层各元素的相对权重,并进行一致性检验。虽然在构造判断矩阵A时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。因此需要对判断矩阵A进行一致性检验。
‘伍’ 层次分析法和模糊综合评价法的区别急!~~~~ 最好能整理出小点,非常感谢!
模糊综合评价法、模糊层次分析法的评价步骤大体类似,模糊层次分析法与模糊综合评价法的不同就是前者将评价因素按照一定规则进行分类形成层次结构,一般有目标层、准则层和因素层三层结构,而模糊综合评价法直接是目标层、因素层.
也就是说层次分析法是模糊综合评价的一种方法
‘陆’ 层次分析法和topsis综合评价法的区别
层次分析法(Analytic Hierarchy Process ,简称 AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪 70 年代初期提出的一种简便、灵活而又实用的多准则决策方法
一、步骤
1、建立递阶层次结构模型
2、构造出各层次中的所有判断矩阵
3、层次单排序及一致性检验
4、层次总排序及一致性检验
二、递阶层次的建立与特点
1、分层:
(1)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标和理想结果。
(2)中间层:这一层次中包含为了实现目标所涉及的中间环节,主要是一些考虑指标和一些准则。
(3)最底层:这一层次中包含为了实现目标可供选择的各种方案。
2、注意点:
一般不要1层不要超过9个因素
3、一个demo
imageimage是三个旅游景点
二、构造判断矩阵
由于准则层中的各准侧的权值可能不同,所以应该设置一个权重。
1、比较判别矩阵的元素意义
设现在要比较n个因子image对某因素Z的影响大小,采用两两比较建立比较判别矩阵image,xi与xj对Z的影响之比为aij。然后反过来xj与xi的影响之比为aji=1/aij。
2、比较判别矩阵的定义
image
3、关于比较判别矩阵元素的确定
使用数字1-9以及其倒数作为标度。
image
三、层次单排序及一致性检验
1、原理
判断矩阵A对应于最大特征值image得特征向量W,经归一化即为同一层次相应元素对于上一层次元素相对重要性的排序权值。称为层次单排序
image
image
因此,我们通过image来检验A是否为一致矩阵,当image比n大的越多,A的非一致性程度也就越严重,所以我们可以通过这种方法来检验一致性。
2、步骤
(1)计算一致性指标CI
image
(2)查询平均随机一致性指标RI,对应n=1到9,RI值分别为
image
这是通过随机的方法生成的一组标准指标。
(3)计算一致性比例CR
image
当CR<0.1,认为矩阵的一致性是可以接受的。
四、层次总排序及一致性检验
image
1、说明
(1)A为上一层次(高的层次),B为当前层次
(2)a1,a2,a3……am为A层次的总排序权重。
(3)b1j……bnj是B层对Aj的单排序权重。
(4)从最高层到最底层
现求B层中各因素关于总目标的权重,即求B层各因素的层次总排序权重b1,b2……bn。就按照上图中的方法进行计算
‘柒’ 现代综合评价方法有哪些,各个方法有啥优点
1、专家打分评判法
专家评分法是出现较早且应用较广的一种评价方法。它是在定量和定性分析的基础上,以打分等方式做出定量评价,其结果具有数理统计特性。
主要步骤是:
首先根据评价对象的具体情况选定评价指标,对每个指标均定出评价等级,每个等级的标准用分值表示;然后以此为基准,由专家对评价对象进行分析和评价,确定各个指标的分值;最后采用加法评分法、加权评分法、连乘评分法或加乘评分法求出各评价对象的总分值,从而得到评价结果。
专家评分法的最大优点是,在缺乏足够统计数据和原始资料的情况下,可以做出定量估价,专家评价法具有使用简单、直观性强的特点。
验以及知识的广度和深度,主观性极强,并且其理论性与系统性不强,一般情况下难以保证评价结果的客观性和准确性。
2 、层次分析法(AHP) 层次分析法(AHP)是1973年美国学者T.L.Saaty最早提出的,经过多年的发展现已成为一种较为成熟的,一种定性与定量分析相结合的多准则决策方法。
AHP的优点:
首先既有效地吸收了定性分析的结果,又发挥了定量分析的优势;既包含了主观的逻辑判断和分析,又依靠客观的精确计算和推演,从而使决策过程具有很强的条理性和科学性。其次,AHP把问题看成一个系统,整个过程体现出分解、判断、综合的系统思维方式,也充分体现了辩证的系统思维原则。
AHP的不足:
(1)在应用中仍摆脱不了评价过程中的随机性和评价专家主观上的不确定性及认识上的模糊性。
(2)并且判断矩阵易出现严重的不一致。
(3)AHP方法得出的结果是粗略的方案排序。
‘捌’ 介绍一下层次分析法和在相关领域应用。。。
层次分析法(Analytic Hierarchy Process,简称AHP),是美国匹兹堡大学L.T.Saaty教授创立的,它把无结构决策转化为有序的递价层次结构决策[1]。AHP是一种将定性与定量分析方法相结合的多目标决策分析方法。该法的主要思想是通过将复杂问题分解为若干层次和若干因素或指标,对两两指标之间的重要程度作出比较判断,建立判断矩阵,通过计算判断矩阵的最大特征值以及对应特征向量[2],可以得出不同指标重要性程度的权重,从而对目标层做出科学的评价。
层次分析法被广泛应用于安全科学研究,诸如煤矿安全研究、危险化学品评价、油库安全性评价、城市灾害应急能力、交通安全评价等诸多方面;在与气象相关的环境科学研究中,层次分析法已在大气环境研究、水环境研究、生态环境研究等领域得到了应用[3]。在相关的气象评估工作方面,罗慧等人基于模糊数学和信息扩散理论, 把高影响天气事件作为气象风险源, 综合应用1 2 1 2 1气象信息服务电话拨打次数的信息, 计算高影响天气事件的风险概率, 以及社会公众对不同高影响天气事件关注度风险水平和关注人数[4]。还综合应用层次分析法( AHP方法) 和波士顿矩阵( B C G矩阵) 相结合的思路,将气象服务用户群对服务效益评估这个复杂系统的思维过程数学化、 系统化, 建立了定量的气象服务期望度/满意度组合矩阵分析模型
‘玖’ 模糊评价法和层次分析法有什么不同
模糊层次分析法是将模糊分析法和层次分析法结合起来的一种方法。 而层次分析法只有层次分析法一种方法。 一般用层次分析法做两件事,一是将目标按层次细分为许多不同的指标或方面;二是在确定权重时使用。 但是大部分人只将确定权重那部分称作层次分析法。 模糊数学评价是由美国控制论专家乍得于1965年提出的,它引入模糊数学中的“隶属度”,用隶属函数对具有模糊性的指标进行处理。 模糊数学评价用隶属函数描述方案的得分来量化指标实测值,可以较好地解决综合评价中的模糊性(如因素类属之间的不清晰性 、 专家认识评价上的模糊性等),可最大限度地减少人为因素,因此该数学工具非常适合用于对环境投资项目绩效的审计。 模糊数学评价的具体过程主要包括确定因素集、评价指标的无量纲化处理、给定各指标层权重、建立评价等级集、确定隶属关系,建立模糊评价矩阵、进行模糊矩阵的运算,得到模糊综合评价结果六个方面。 简要地说,就是把评价语好中差之类的变成数字分数,然后用矩阵向量乘来乘去的,最后得到评价结果的综合方法。也就是说,模糊评价法是一种对方案进行综合判断筛选的方法,层次分析法负责指标细分和权重设计方面。 要是再不明白只能多去看看论文了。。。