① 病因研究中的偏倚的种类及控制措施有哪些
定义及种类:
偏倚是在研究中(从设计到执行的各环节)的系统误差及解释结果的片面性而造成的,使研究结果与其真值出现了某些差值。因为它是由系统误差所造成,加大样本并不能使之减少。一旦造成事实,则无法消除其影响。因此,必须认识偏倚,从设计起直到整个研究过程均要加以控制。病因研究中的偏倚有10种以上,它们可以归纳为选择性偏倚、信息(测量、观察)性偏倚及混杂(混淆)性偏倚。
(一)选择性偏倚(selection bias)
在选择研究对象时,试验组和对照组的设立(纳入标准)不正确,使得这两组人在开始时即存在处理因素以外的重大差异,从而产生偏倚。常见的主要有:
1.就诊机会偏倚(入院率偏倚,admissionrate bias)由于疾病严重程度不同、就医条件不同、人群对某一疾病的了解和认识程度不同等原因而使患不同种类疾病的人(或有某种特性者)的住院率不同。从医院选取对照时,如果没有注意到此点,则可引起偏倚。此种偏倚首先由Berkson发现并记述,因此,将此种偏倚又称为Berkson偏倚或Berkson谬误(fallacy)。
2.现患病例及新发病例偏倚(prevalence-incidencebias,又叫Neyman bias)此种偏倚易出现在病程较短的严重致死性疾病,如心肌梗死,部分病例在送到医院前已死亡,如果只以存活的现患病例为对象,研究某因素的作用,必然产生偏倚。这些死亡病例通常未计入心肌梗死总发病人数中,以至于所报道的患病数少于实际的发病数。又如,在病例对照研究中有意或无意排除(或加入)某些病例,也可出现偏倚,如研究吸烟与肺癌的关系时,对照组包括了慢性支气管炎和冠心病,由于此二病均与吸烟有关,所以吸烟与肺癌的OR减低,甚至于看不出吸烟作为肺癌的病因作用。患病后改变生活习惯也可以使用病例对照方法探讨病因出现偏倚,如患肺癌后戒烟,患高血压后将饮食口味调淡、不吃动物脂肪(肥肉)、适当增加体力活动等等,都可在病例对照研究中使这些因素的病因作用被抵消。又如,乳腺癌与利血平关系的病例对照研究,在对照组中排除了心血管病人(其中有相当多的高血压病人,他们服用利血平),所以得出利血平是乳腺癌的危险因素的结论。另一个研究将全部病例均纳入,则未发现此相关。
3.检出信号偏倚(detectionsignal bias,unmasking bias)某因素如能引起或促进某症候(与所研究疾病的体征或症状类似)的出现,使患者因此而去就医,这就提高了该病的检出机会,使人误以为某因素与该病有因果联系。这种虚假联系造成的偏倚称为检出信号(或检出症候)偏倚。如,曾有研究发现子宫内膜癌与绝经期服用雌激素有关。这个研究结果是因为绝经期妇女服用雌激素会引起不规则子宫出血,因此而就医,得到检查子宫内膜的机会较多,从而增加了发现子宫内膜癌的机会。不服用雌激素的子宫内膜癌常无明显症状,发现机会较少。以刮宫或子宫切除作为诊断子宫内膜癌的诊断时,绝经期服用雌激素的OR为1.7,而以子宫出血就诊者的OR为9.8,二者相差悬殊。显然,以子宫出血就诊增高了OR。此类偏倚即检出信号偏倚。
4.无应答偏倚(non-responsebias)即研究对象对研究内容产生不同的反应而造成的偏倚。如用通信方式调查吸烟情况,不吸烟者与吸烟者的应答率可以相差悬殊。无应答者的暴露或患病状况与应答者可能不同。如果无应答者比例较高,则使以有应答者为对象的研究结果可能存在严重偏倚。所以在研究报告中必须如实说明应答率,并评价其对结果可能造成的影响。与一部分人无应答相反的情况是有一部分人特别乐意或自愿接受调查或测试。这些人往往是比较关心自身健康或自觉有某种疾病,而想得到检查机会的人。他们的特征或经历不能代表目标人群。由此造成的偏倚称为志愿者偏倚(volunteer bias)。
总之,无论什么原因使观察组与对照组成员不是来自同一总体,即可造成除研究因素以外的有关因素在两组分布不均衡,从而造成选择偏倚。
(二)衡量偏倚(measurement bias)或信息偏倚(information bias)
对观察组和对照组进行观察或测量时存在频度和(或)强度的差异,而使最终判断结果时出现偏倚。在非盲法观察时,由于观察者知道谁在观察组,、谁在对照组,更易出现此种偏倚。
1.回忆偏倚(recall bias)特别是在病例对照研究中,需要被观察者回忆过去的情况(甚至久远的情况,如癌的病因学研究),回忆的准确性会受到影响。病例组可能回忆仔细(特别是当怀疑某因素与某病有关时,如吸烟、被动吸烟与某些癌的关系,口服避孕药与下肢血栓性静脉炎、服雌激素与子宫内膜癌等),而对照组回忆则可能不那么仔细,尤其当研究者屡次提醒病例组有否这些因素时(诱导其回答,更容易出现偏倚-寻因性偏倚)。有时某种症状或状态的存在会诱导产生或加强其与某种因素的联系,如前段所举子宫内膜癌,得出与口服雌激素有联系的结论即属此,称为疑因性偏倚(exposure suspicion bias)。
2.疑诊偏倚当观察者已知被观察者的某些情况时,在研究时会自觉不自觉地侧重询问、检查有关情况(如对服口服避孕药的妇女,仔细检查其有无下肢血栓性静脉炎,而对有下肢血栓性静脉炎的妇女仔细询问其口服避孕药的历史)就可能得出二者有联系的结论。但实际上可能是偏倚所致。
3.沾染偏倚(contaminationbias)对照组成员有意或无意应用了试验组的措施。如用低钠盐减少钠摄入与高血压关系的研究时,对照组成员同样可以购得低钠盐(因接受宣传后认为低钠盐可以防止高血压),从而使判断结果时出现偏倚(沾染性偏倚)。试验组成员有意或无意接受了研究因素以外的措施,而使结果有利于试验组,称为干扰。干扰与沾染最容易在非盲法观察的条件下发生。
(三)混杂(混淆)偏倚(confounding bias)
混杂(淆)因子存在时,在分析结果时可能错误地把某一因素当成某一结果的原因。即是存在混杂偏倚。前节曾谈到混杂因子。
混杂偏倚使研究结论不能反映真实的因果联系。这种偏倚的产生常常是研究者专业知识局限,不了解混杂的存在,或者虽然知道,但忽略了其存在。混杂偏倚常常在资料分析阶段显露出来。因而一旦认识后是可以设法纠正的。
混杂因素:①不是要研究的暴露因素,而是研究过程中常规地被收集起来的(如年龄、性别、吸烟、饮酒等生活习惯),是一个外部变量(extraneous variable);②是对研究的疾病的危险因素,或通过其他危险因素而间接起病因作用;③它与所研究的暴露因素之间有统计学的联系,但二者又是独立存在的。
应结合专业知识去考虑本次研究的结果,可能有什么混杂因素夸大或缩小了其效应指标(RR或OR)。根据可能的混杂因素分析校正的(adjusted)RR或OR(记为aRR或aOR),以与最初所得到的粗的(crude)RR或OR(记为cRR或cOR)比较。如果aRR与cRR或aOR与cOR相近似,则此因素非混杂因素,如相差大则为混杂因素。最常用的方法为按可疑的混杂因素进行分层分析。即是将有此因素的作为一层来比较其RR或OR,而将无此因素的作为另外一层来分析。也可以比较分层前后x2值,此时用Mantel-Haen-szel法比较。如分层前后无差别,则表示分层因素非混杂因素。还可比较分层校正前OR(cOR)与校正后OR(aOR),如有差异说明分层因素为混杂因素。
控制措施:
(一)混杂偏倚
根据专业知识事先找出可能存在的混杂因素,在设计时注意去掉这些混杂因素。混杂出现在两组分配不均匀的情况,因此,尽量做到齐同对比以防止混杂因素的作用。
在资料分析阶段显现出来的混杂偏倚,可以按前节所述的方法加以纠正,如分层分析,也可用多元回归分析及标准化等方法加以处理,以识别混杂因素的影响。
(二)选择偏倚及衡量(测量)偏倚
这些偏倚是在科研设计及观察阶段所产生,主要因为设计不周及(或)测量带有倾向性而造成。带有方向性,不能以加大样本量加以减少,一旦形成之后即无法弥补,很可能需要重新进行。因此,从设计之初就要考虑到各个环节可能出现的偏倚,而加以防止,一般应注意以下几点:
1.设计方案及研究方法的选择应当选择论证强度大的设计方案。
为避免选择性偏倚,首先的设计方案应是随机对照设计方案。有严格的诊断标准和纳入标准的队列研究方案也较好。由于病例对照研究在临床较易执行,因此,较多使用。此时必须注意严格选定有代表性的研究对象(病例及对照),使病例与对照均衡,资料可靠、分析正确,或应用多因素分析方法。
2.严格限定纳入标准规定纳入与排除的标准。病例与对照的诊断应有“金标准”。尽可能采取随机分组法。病例对照研究使用配比法,可使病例与对照组有良好的可比性。测量和判定结果时实行盲法,尽量应用客观指标。分析时采用分层分析法及对率进行标准化等等。要有良好的科研作风及严谨的科学态度,争取病人良好的依从性及减少失访率。
② 临床试验过程中 控制偏倚的措施有哪些
偏倚的控制:
1、加强科学设计,在选择对象时,尽可能采取随机抽样原则;进行检查或调查时尽可能采取盲法;调查的变量尽可能采取客观性强的指标。并注意研究对象的代表性。如果在医院选择病例,则尽可能多选几所医院进行。对无应答的对象,要设法补救并在分析时对无应答的影响作出特别分析。
2、对混杂因子的作用,在研究设计阶段可采用限制和匹配的方法进行控制。在分析阶段可采用分层分析方法,标准化处理或应用多因素分析方法进行处理。
③ 控制偏倚的方法有哪些
1、限制:针对某一或某些可能的混杂因素,在设计时对研究对象的入选条件予以限制。控制已知的混杂因素,不能控制未知的混杂因素。
2、匹配:在为研究对象选择对照时,使其针对一个或多个潜在的混杂因素与研究对象相同或接近,从而消除混杂因素对研究结果的影响。
3、随机化:指以随机化原则使研究对象以等同的几率被分配在各处理组中,从而使潜在的混杂因素在各组间分布均衡。
4、统计处理:混杂偏倚在资料分析阶段也可以通过一定的统计处理方法予以控制。如分层分析、使用回归模型等。
偏倚的分类
选择偏倚:出现于研究设计阶段,指由于研究对象选择不当而使研究结果偏离真实情况而产生偏倚。研究设计上的缺陷是选择偏倚的主要来源,在确定研究对象时表现得最为突出。常见的情况是在研究开始时实验组和对照组就存在着除诊疗措施以外的差异,而缺乏可比性。
信息偏倚:又称观察偏倚、测量偏倚,是指研究过程中进行信息收集时产生的系统误差。测量方法的缺陷,诊断标准不明确或资料的缺失遗漏等都是信息偏倚的来源。
混杂偏倚:流行病学研究中,由于一个或多个外来因素的存在,掩盖或夸大了研究因素与疾病的联系,从而部分或全部地歪曲了两者间的真实联系,称之为混杂偏倚或混杂。引起混杂的因素称为混杂因子。
④ 数据不会说谎,5大常见统计偏倚
人们常说“用数据说谎”,我要说往往数据的分析是没问题的,但这些分析却是建立在夸大或不实的数据之上。下面便是几个常见的“错进错出”案例。
选择偏倚
《纽约客》资深影评人宝琳?凯尔(Pauline Kael)据称曾经在理乍得?尼克松(Richard Nixon)当选美国总统后评论:“尼克松不可能赢了竞选,我认识的人里面没一个投了他。”这句话很有可能是杜撰的,但却很好地说明了糟糕的样本(一群自由派朋友)会如何给更大的群体带来错误的偏见(全美国的投票结果)。而这也引出了我们应该问自己的问题:如何选择评估样本?如果要接受评估的群体的每一个成员没有均等的机会入选样本,那么最终得出的结论就将会有偏颇。以爱荷华州的民意测验为例,这是美国总统竞选中的一项惯例,在总统大选年的8月,也就是正式投票的前一个月,共和党的候选人会来到爱荷华州的埃姆斯市(Ames)笼络选民,选民每个人支付30美元投上一票以参与表决。爱荷华州的民意测验结果并不能告诉我们共和党候选人的未来。(该调查的预测在过去5次大选中只说对了3次共和党提名候选人的结果。)为什么?因为支付30美元投票参与这项民意测验的爱荷华州共和党选民跟爱荷华州的其他共和党选民不同,而爱荷华州的共和党选民又跟美国其他地区的共和党选民不同。
“尼克松不可能赢了竞选,我认识的人里面没一个投了他。”
选择偏倚还有其他很多种形式。在机场做消费者问卷调查很可能造成偏倚,因为坐飞机的人大体上会比一般人更富裕;而在90号洲际公路上做同样的调查问卷结果又会偏向另一端。而两项调查都有可能出现的偏倚则是那些愿意在公共场合接受问卷调查的人不同于那些不愿意被打扰的人。如果你在公共场合问100个人做一份简短的调查,其中只有60人愿意,那么这60个人跟剩下40个看都不看你一眼就走开的人在某些地方有着显着的不同。
发表偏倚
正面的结果比负面的更有可能得到发表,而这可能会混淆我们最终所见到的结论。假设你刚刚做完了一次严谨的追踪调查,得出结论认为玩视频游戏不能预防结肠癌。在这项调查中,你花了20年的时间跟踪访问了作为代表性样本的10万个美国人;这些人当中,长时间玩视频游戏的跟不玩儿视频游戏的罹患结肠癌的几率基本一致。我们假设你的研究方法完美无缺。但哪家医学期刊会发表你的研究结论呢?
“大多数活动都不能预防结肠癌。”
答案是没有。原因有二:第一,没有有力的科学理由认为玩儿视频游戏对结肠癌有什么影响,因此你研究这个的意义不明;其次,也是更重要的一点,某件事情不能预防结肠癌不是什么有趣的发现。毕竟,大多数东西都不能预防结肠癌。否定的结论尤其不性感,不论是在医疗领域还是其他。
而两相抵消,就对我们看到的研究(或者说看不到的)产生了偏倚。假设你的研究生同学经过另一项追踪调查得出了不同的结论,她发现玩视频游戏的人确实罹患结肠癌的几率较小。现在就有意思多了!医学期刊要的就是这样的论文,大众媒体、博客写手,还有视频游戏的制作商(他们巴不得在自己产品的包装上标注玩游戏有益身体健康),都在寻找这样的内容。要不了多久,全美国的虎妈们就会纷纷夺过自己孩子手里的书本,转而逼迫他们玩游戏来“保护”下一代免于癌症困扰了。
当然,统计学里反复强调的一个论点是,异乎寻常的事情时而发生,这只是概率问题。如果你进行100次调查,其中有一次很可能会出现纯属无稽的结果——就像玩视频游戏和结肠癌患病率低之间的数据关联。而问题在于:99次发现玩游戏跟患结肠癌无关的研究都得不到发表,因为它们没有意思,而那一次发现两者有关联的研究却被印刷出来,迎来了众多关注。偏倚的源头并不在于研究本身,但传达给公众的信息却是偏颇的。而研读视频游戏和癌症关联的研究者只能发现一篇论文,而这篇论文表明的却是玩视频游戏能预防癌症。实际上,100项研究里有99项都找不出二者之间有任何关联。
回忆偏倚
记忆是件奇妙的东西——尽管不能总算作优质数据的来源。人类天生就有冲动将现状理解成过去发生的事情合乎逻辑的结果,也就是因果关系。问题出在当我们试图去解释某些当前特别好或者特别糟糕的结果时,记忆就会变得“系统性的不堪一击”。例如一项研究饮食和癌症之间的关系的研究。1993年,一名哈佛大学的研究者构建了一组罹患乳腺癌的妇女和没有被诊断出癌症的年龄匹配组女性的数据。研究人员分别询问了这两组女性的早年饮食习惯。研究得出了清晰的结论:患有乳腺癌的妇女在年轻时有更显着的可能拥有高脂肪的饮食。
哈,不过,这实际上不是在研究饮食习惯对罹患癌症几率有什么影响。这项研究真正调查的是患上癌症如何影响了女性对自己早年饮食习惯的记忆。所有参与这项研究的女性都在多年以前,在任何人都没有被诊断患有癌症的时候,填写了关于其饮食习惯的调查问卷。研究的结果十分惊人,患有乳腺癌的妇女回想自己过去饮食摄入的脂肪的含量比她们实际消耗的要多得多;没有患癌症的女性则没有出现这种情况。
《纽约时报杂志》在描述这种记忆偏倚的隐秘本质时称:
“罹患乳腺癌不仅改变了一位女性的当下和未来;它连她的过去也改变了。患有乳腺癌的女性(无意识地)认为高脂饮食可能是她们患病的易感原因,并且(无意识地)认为自己过去有高脂的饮食习惯。对于任何了解这种耻辱病的历史的人而言,这一模式都熟悉得令人悲伤:和她们之前成千上万的女性一样,这些女性在她们自己的记忆里寻找原因,并将这个原因放置在记忆里。”
回忆偏倚是也是追踪研究往往偏向于横向研究(cross-sectional studies)的一个原因。在横向研究里,数据是同时采集的。在5岁的时候,参与者会被问及他对学校的态度。然后,再过13年,我们可以重访参与者,看他是否高中辍学。在横向研究中,所有的数据都在同一时间点采集,研究者必须询问18岁的高中辍学生他5岁时对学校有何看法,而这一信息固然便是不怎么可靠的。
存活者误差
假设一名高中校长报告说,学生中的一组特定人群在4年中(编注:美国高中有4年)考试成绩稳步上升。这批人高二的得分比他们在高一时的成绩好。高三那年的分数更好,高四达到了最好。我们假定不存在作弊的情况,也没有任何创造性地运用描述性的统计数据。无论用什么评价标准,这批学生每一年都比前一年做得更好:平均数、中位数、学生在年级水平的百分比等等。你会(A)提名这所学校的领导为“年度最佳校长”还是(B)要求提供更多的数据?
“如果你有一屋子高矮不齐的人,强迫最矮的那个离开房间会使整个房间的平均身高上升,但这样做并不会使任何人的身高变高。”
我的话就会选(B)。我嗅到了存活者误差的猫腻,这种情况下样本中去掉了一些或很多观测数据,以至于改变了整个剩下的观测结果,因而任何基于剩余观测数据所做的分析也受了影响。假设我们的校长真不是个好人:他学校里的学生啥也没学到;每年都有半数人辍学。不过,这在数学的考试分数上面看起来很是漂亮——但没有任何一名学生实际上考得更好。有理可测,学得最差的学生(也是考试分数最低的学生)最有可能辍学,那么考试分数的平均分会随着更多学生辍学而稳步上升。(如果你有一屋子高矮不齐的人,强迫最矮的那个离开房间会使整个房间的平均身高上升,但这样做并不会使任何人的身高变高。)
健康用户误差
每天按时吃维生素片的人更有可能身体健康——他们是每天都按时吃维生素的人!而至于维生素是否真的有益健康这又另当别论了。 想想这样一个思考实验。假设公共卫生官员颁布这样一条声明,所有的刚生了小孩儿的夫妻都能该把自己的孩子裹在紫色的睡衣里睡觉,因为这有助于刺激大脑的发育。20年后,追踪研究证实,幼年时期穿紫色睡衣确实与今后人生中取得成功有一个特别大的正相关。比方说,我们发现,98%考上哈佛大学的新生孩童时期都穿着紫色的睡衣(现在许多人仍然这样做),相比之下,马萨诸塞州监狱系统里的囚犯只有3%年幼时穿紫色睡衣。
“紫色睡衣并不重要。”
当然,紫色睡衣并不重要,但拥有那种会让孩子穿紫色睡衣的父母却十分重要。就算试图控制父母教育这样的因素,研究者仍然会面临那些执着于让孩子穿紫色睡衣和不穿的父母之间不可观测的差异。正如《纽约时报》健康专栏作家加里?陶布斯(Gary Taubes)解释说,“简单地说,问题就是踏踏实实做那些对他们有好处的事情——比如按医嘱服药或吃他们认为有益健康的食物——的人,跟那些不这样做的人有着根本上的不同。”这种效应有可能扰乱任何试图评估那些被视为有益健康的活动(比如每周运动或吃羽衣甘蓝)真实效果的研究。研究人员以为他们是在比较两种饮食习惯对健康的影响:吃羽衣甘蓝和不吃甘蓝。但事实上,假如治疗组和对照组不是随机分配的,那么他们在比较两种不同的人吃两种不同的饮食,治疗组和对照组的不同有两个方面,而不是仅仅一个。
如果说统计学家是侦探,那么数据就是线索。我的妻子在新罕布什尔郊区的高中教了一年书。她的一个学生因为闯入一家五金店盗窃工具而被逮捕归案,而警察之所以能破案是因为:(1)天刚刚下雪,从五金店到学生的家里的雪上有足迹;(2)在学生家里找到了被盗的工具。好线索帮了大忙。
就跟好数据一样。但首先,你得有好的数据,否则一切都是空。
⑤ 信息性偏倚的控制方法有哪些(分值:6分)
信息性偏倚的控制方法有哪些?
答:1、采用盲法收集资料:在研究中,由于研究者和研究对象都易受到心理因素的影响,容易出现先入为主或思维定势,引起信息性偏倚。使用盲法是避免研究者和研究对象发生信息性偏倚的较为有效的方法。盲法又分为单盲法和双盲法。单盲法为仅研究者知道受试者所接受的干扰,受试者自身并不清楚,从而可避免受试者主诉时所致的报告偏倚。双盲法是指研究者和受试者均不知道受试者发球哪一实验组以及不知道接受的是何种干预方法。双盲法可大大降低受试者主诉时所产生的报告偏倚和研究者作评价时所产生的诊断怀疑偏倚。如果在研究中使用盲法收集资料有一定的困难,则尽可能利用实验室检查结果、查阅研究对象的诊疗护理记录或健康体检记录等作为调查信息来源。在收集资料时还可有意识地将调查范围扩展一些,如在询问时可同时收集一些与调查内容看似无关的变量来分散调查人员与被调查者的注意力,以减少主观因素对信息准确性的影响。
2、制定严格的资料收集和质量控制方法:研究中使用的仪器、设备应提前做好质量检测和标定;试剂、药剂应符合测试要求;要设计科学、统一的调查表;对调查人员要进行统一的培训,使其了解调查项目或调查内容的含义,统一标准、统一方法、统一调查技巧,以科学的态度进行资料的收集;对研究对象要做好宣传组织工作,以取得研究对象的密切合作,如实、客观地提供拟获取的信息。
3、尽量使用客观的指标:以避免研究者和研究对象人为的偏倚。如应用实验室检查结果、查阅研究对象的诊疗记录或健康体检记录作为调查信息来源。在问卷调查法是唯一的收集资料的方法时,研究者应尽量采用封闭式问题进行资料的获取。
⑥ 如何进行敏感性分析和发表偏倚分析
敏感性分析一般以Meta分析结果所绘制的森林图为依据,把肉眼可见的与总体样本95%CI分布差异相对较大的研究(由最明显的开始)予以排除直至可用固定效应模型分析为止(即I方值小于等于50%,同时P大于等于0.1),如敏感性分析后依然无法用固定效应模型分析,则需通过继续逐一排除剩余数据样本以动态观测Meta分析结果变化,如结果变化不大(具体标准暂未在2014版考克兰系统评价员手册中有体现,我个人则是以I方和RR/SMD等统计量变化率作为判断标准),则说明数据合并后稳健性可,可采用随机效应模型作Meta分析,所得结论有效,但不宜过于绝对。
而敏感性分析不宜排除过多数量的数据样本,我个人以50%作临界值,如一个结局指标需要排除至少50%的纳入研究数据样本,方能使数据合并结果稳健,则说明原始纳入研究异质性大,无法明确所有纳入研究在该结局指标的测量标准、方法基本一致。同时敏感性分析后剩余数据样本数我个人认为最好大于等于3,以便能获取较有说服力的Meta分析结果。
当然我也比较同意上一个答案的观点,敏感性分析的纳入研究排除标准可参照Jadad质量评分或RoB风险偏倚评估结果,但我认为应补充一个前提:纳入研究中需有相当部分高质量研究,即Jadad评分大于等于4分(满分7分)或符合Standard RCT标准(兼有随机化、盲法、安慰剂三要素),如纳入研究方法学质量普遍不高,则通过参照方法学质量评价结果进行敏感性分析的做法意义不大。
发表性偏倚目前主要通过倒漏斗图法判断,当然也有Egger&Begger’s Test,可将偏倚程度量化(适用于纳入数据数小于10的结局指标,然而RevMan无法做此检验),发表性偏倚一般用于对纳入数据样本数(敏感性分析后)大于等于10结局指标的讨论。
个人的小小体会:系统评价/Meta分析并没有太多固定的模版,每个研究者所关注的点可以不一样,但最好做到有理有据,能自圆其说。
以上谨为个人粗浅看法,如有纰漏之处,欢迎指正!
⑦ 偏倚的控制方法有哪些
偏倚的控制:
1、加强科学设计,在选择对象时,尽可能采取随机抽样原则;进行检查或调查时尽可能采取盲法;调查的变量尽可能采取客观性强的指标。并注意研究对象的代表性。如果在医院选择病例,则尽可能多选几所医院进行。对无应答的对象,要设法补救并在分析时对无应答的影响作出特别分析。
2、对混杂因子的作用,在研究设计阶段可采用限制和匹配的方法进行控制。在分析阶段可采用分层分析方法,标准化处理或应用多因素分析方法进行处理。
⑧ 随机抽样方法主要有
简单随机抽样的优点是能获得良好代表性的研究样本,操作实施也比较容易理解;其缺点是在抽样范围较大时,需要对总体中每个研究对象进行编号并收集基本信息,工作量太大从而影响研究可行性。另一方面,当某一重要研究因素在人群中分布不均匀时,采用简单随机抽样可能会导致在总体中占比例较少的个体被遗漏,从而导致选择偏倚。分层抽样则可以很好地解决这一问题。
分层抽样(Stratified Sampling)是从分布不均匀的研究人群中抽取有代表性样本的方法。先按照研究对象的属性(如年龄、性别、病情、病程、临床亚型、职业、教育程度、民族等)将研究人群分为若干层,然后在每层内再开展随机抽样。
一定要注意,分层抽样要求层内变异越小越好,层间变异越大越好,这样可以提高样本的代表性,便于层间进行比较。分层随机抽样不能保证每个个体被抽中的概率相等,有可能处于不同分层之间的个体被抽中概率是不同的。
系统随机抽样也称机械随机抽样或等距随机抽样,即将总体单位按某一标志(如时间)排序,然后按一定间隔来随机抽取样本单位。例如,要从100件产品中抽取10件组成样本,首先将100件产品按某一标志排序,顺序编号为1~100;然后用抽签或查随机数表的方法确定1~10号中入选样本的编号(假定为4号);然后按等距原则依次确定入选样本的产品编号为14、24、34、44、54、64、74、84、94;最后由编号为4、14、24、34、44、54、64、74、84、94的10件产品组成样本。
整群抽样又称聚类抽样,是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群。然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。