导航:首页 > 研究方法 > 有机合成新方法研究

有机合成新方法研究

发布时间:2022-06-30 05:53:45

⑴ 化工专业的考研要考哪些科目

下面是各个专业研究生的考试科目 你自己看看吧!
070301无机化学专业研究生
01配合物化学
02无机材料化学
03无机分子设计与组装
04能源与环境化学
05生物无机化学 ①101政治(含法律硕士)
②201英语(含法律硕士)
③730有机化学
④912无机化学
070302◢分析化学专业研究生
01环境与工业过程监测
02波谱分析(含电分析)
03化学计量学与智能分析仪器
04生化、医药检测新技术
05现代光分析化学及联用技术
06植物分析分离新技术 ①101政治(含法律硕士)
②201英语(含法律硕士)
③730有机化学
④912无机化学

070303有机化学专业研究生
01功能高分子
02医药原料及中间体合成
03药用植物活性成分提取与分离
04不对称合成与手性拆分
05有机合成新方法研究
06 应用电化学 ①101政治(含法律硕士)
②201英语(含法律硕士)
③730有机化学
④912无机化学

070304物理化学专业研究生
01材料物理化学
02热化学与热电化学
03物质结构与性能
04界面与催化
05应用量子化学
06应用电化学 ①101政治(含法律硕士)
②201英语(含法律硕士)
③730有机化学
④912无机化学
070305高分子化学与物理专业研究生
01功能高分子(生物医用高分子、光电信息高分子、分离用高分子材料、高分子试剂和催化剂)
02高分子的分子设计与合成
03高分子凝聚态结构与性能
04高分子复合材料
05特种涂料与粘结剂 ①101政治(含法律硕士)
②201英语(含法律硕士)
③730有机化学
④912无机化学

080601◢冶金物理化学专业研究生
01冶金热力学与动力学
02应用电化学(含热电化学、光催化电化学)
03材料物理化学(光电转换材料、能源材料、催化材料、纳米材料、功能高分子材料、无机非金属材料、超临界材料)
04环境物理化学
05冶金过程模拟与模型 ①101政治(含法律硕士)
②201英语(含法律硕士)
③301数学一
④912无机化学

081701◢化学工程专业研究生
01催化反应工程
02化工分离工程
03生化分离工程
04化工过程模拟优化
05资源再生工程 ①101政治(含法律硕士)
②201英语(含法律硕士)
③302数学二
④916化工原理

081702◢化学工艺专业研究生
01化工冶金
02分离科学与工艺
03精细化工
04环境化工
05化工新材料 ①101政治(含法律硕士)
②201英语(含法律硕士)
③302数学二
④916化工原理
081703◢生物化工专业研究生
01药剂成型技术
02天然药物活性成分分离技术
03药物分子设计与构效关系
04酶工程与生物转化
05细胞工程
06生物电化学 ①101政治(含法律硕士)
②201英语(含法律硕士)
③302数学二
④910生物化学(C)
081704◢应用化学专业研究生
01精细化工新产品、新技术
02信息功能材料(含生物医用材料、分子与固体电子材料、纳米材料等)
03应用电化学(化学电源及其新材料、电化学合成等)
04能源材料化学
05分子生物电化学
06药物合成与构效分析
07功能高分子材料 ①101政治(含法律硕士)
②201英语(含法律硕士)
③302数学二
④912无机化学
081705◢工业催化专业研究生
01催化材料设计与制备
02催化反应工程
03相转移催化技术
04酶制备与酶催化技术
05电催化技术
06电池催化材料 ①101政治(含法律硕士)
②201英语(含法律硕士)(含法律硕士)
③302数学二
④916化工原理
081720◢★制药工程专业研究生
01药物反应工程
02药物分离工程
03药物制剂新技术
04中药复方筛选与优化
05制药过程在线检测与控制技术 ①101政治(含法律硕士)
②201英语(含法律硕士)
③302数学二
④910生物化学(C)

⑵ 有机化学研究手段的发展是什么

有机化学的研究方法就是根据研究需要,利用结构和机理来设计预测一个变化,通过实验和分析检测来验证结果,并对设计进行反馈修正。

有机化学研究手段的发展经历了从手工操作到自动化、计算机化,从常量到超微量的过程。

20世纪40年代前,用传统的蒸馏、结晶、升华等方法来纯化产品,用化学降解和衍生物制备的方法测定结构。后来,各种色谱法、电泳技术的应用,特别是高压液相色谱的应用改变了分离技术的面貌。

中高压液相色谱色谱分离层析系统

Martin 和 Synge在1941年就提出高效液相色谱的设想,然而直到60年代后期,由于各种技术的发展,高效液相色谱才付诸实现。这种色谱技术曾被称为高速液相色谱、高压液相色谱,目前使用最多的名称是高效液相色谱。高效液相色谱已经广泛地应用,成为一项不可缺少的技术。各种光谱、能谱技术的使用,使有机化学家能够研究分子内部的运动,使结构测定手段发生了革命性的变化。

电子计算机的引入,使有机化合物的分离、分析方法向自动化、超微量化方向又前进了一大步。带傅里叶变换技术的核磁共振谱和红外光谱又为反应动力学、反应机理的研究提供了新的手段。这些仪器和X射线结构分析、电子衍射光谱分析,已能测定微克级样品的化学结构。用电子计算机设计合成路线的研究也已取得某些进展。有机化学研究最重要的研究工具就是核磁共振。现代有机化学研究脱离了核磁共振简直难以想象。核磁共振就是有机化学的眼睛。核磁共振的出现也给有机化学研究带来了一场革命:反应研究第一次可以在克以下进行。核磁和质谱结合的话,基本上元素分析就显得多余了,于是一些传统的分析手段也被迫退出历史舞台。

核磁共振设备未来有机化学的发展首先是研究能源和资源的开发利用问题。迄今我们使用的大部分能源和资源,如煤、天然气、石油、动植物和微生物,都是太阳能的化学贮存形式。今后一些学科的重要课题是更直接、更有效地利用太阳能。

对光合作用做更深入的研究和有效的利用,是植物生理学、生物化学和有机化学的共同课题。有机化学可以用光化学反应生成高能有机化合物,加以贮存;必要时则利用其逆反应,释放出能量。另一个开发资源的目标是在有机金属化合物的作用下固定二氧化碳,以产生无穷尽的有机化合物。这几方面的研究均已取得一些初步结果。

其次是研究和开发新型有机催化剂,使它们能够模拟酶的高速、高效和温和的反应方式。这方面的研究已经开始,今后会有更大的发展。

20世纪60年代末,开始了有机合成的计算机辅助设计研究。今后有机合成路线的设计、有机化合物结构的测定等必将更趋系统化、逻辑化。

⑶ 有机合成的小试路线研究,中试,放大及工艺优化…… 具体指的是什么

有机合成,先要在实验室进行全部合成试验,一步步打通合成路线,用小量的反应物进行试验,确定合成的反应控制条件。确定反应物和生成物的关系量。对中间体和反应物进行检测定性定量;中试是在小试成功的基础上,增加合成反应物质的量,由实验室合成向工业化合成规模前进行的试验,进一步掌握有机合成的反应条件,合成发生的可能变化和反应控制条件变化,进一步摸清全部合成路线的相关情况和控制数据,合成反应与设施设备及控制仪器仪表的适应情况,各中间体和反应物的流程处理,安全处置等;放大是将完全清楚的全部合成路线,在掌握所有合成控制数据的基础上,按照工业化生产的要求,在符合安全要求的中试生产线上,将合成路线的全部反应按工业化生产的要求,将有机合成的投料量与反应物的生成量达到工业化生产的规模和水平;工艺优化是将完全放大合格的有机合成路线,从产出物与投入物比例最大化,合成路线可控,安全,副反应 物少,产出物纯度高、合成过程控制简单,合成能耗小等方面进行改进和更新的过程。

⑷ 有机化学上,所谓的方法学研究是指得什么

方法学研究主要指研究有机化合物的各种方法,如合成方法、分析方法,检测方法鉴别方法等,统称为方法学研究

⑸ 有机合成中反应方法的研究和全合成之间的关系

反应方法和全合成之间是互相促进及互相验证的关系。
一个反应方法在全合成中的成功应用会大大提升该方法的价值,单纯的的反应方法文章一般在TL级别,如果能在某类化合物的全合成中得到应用,立即上升到OL的级别。
反过来,在某一个天然产物的全合成设计中可能就会用到某一种反应方法,或者在探索过程中发现了新的反应方法,可能会用在此全合成中,也可能会用在别的天然产物的全合成中。很有意思的。
如果某个实验室发现了一种反应方法,与之相关的研究就会很多,会很快形成自己的特色而被人所记忆。

⑹ 绿色有机合成

大致包括: 催化剂 微波合成技术 超声波辐射 两相催化 微波加热等等
太多了我就说说超声波吧

尽管超声波早已广泛应用于医学、工业焊接、材料净化、家庭,甚至化学的各个领域, 如物理化学、聚合物化学、分析化学及晶体化学等, 声化学这一名词也早已出现, 但用于有机合成的研究却并不多。 直到近些年来, 随着实验室用超声波清洗器的逐渐普及, 这方面的研究才开始活跃起来,并且引起越来越多合成化学家的兴趣。从这些年来的蓬勃发展趋势来看, 声化学在化学中的地位将会象热化学、光化学和高压化学等一样占有越来越重要的地位, 甚至有人认为, 声化学将比它们占有更重要的地位, 因为它几乎可以覆盖化学的整个领域, 从聚合物化学到化学物理。它方法简单, 使用的仪器也简单, 而且容易控制,我们应给予充分的重视。
本文着重就传统方法与超声波方法的比较对其在有机合成中的应用作一综述。

一、超声波的作用原理

最早发现超声波化学效应的可能是Richards和Loomis, 他们研究的是高频声波(>280kHz)对不同的溶液、固体和纯溶液的影响,随后也有一些零星的报道。近20年来,这方面的研究已呈蓬勃之势,但是迄今为止,对超声波所以能产生化学效应的原因却仍不十分清楚。一个普遍接受的观点〔1〕是:空化现象(cavitation)可能是化学效应的关键, 即在液体介质中微泡的形成和破裂及伴随能量的释放。空化现象所产生的瞬间内爆有强烈的振动波,产生短暂的高能环境(据计算在毫微秒的时间间隔内可达2000-3000℃和几百个大气压)。这些能量可以用来打开化学键, 促使反应的进行, 同时也可通过声的吸收, 介质和容器的共振性质引起的二级效应,如乳化作用、 宏观的加热效应等来促进化学反应的进行。突出的例子是有金属参与的反应。通常有金属参加的反应有两种情况:一是金属作为反应物在反应过程中被消耗掉;二是金属作为反应催化剂。不论哪种情况,通常都会因为金属表面污染而影响反应活性,因而在使用前都要预先清洗,如制备格氏试剂时用碘除去镁表面的氧化膜等。超声波的作用使得在有金属参加的反应中不再需预先清洗, 另外也使得金属表面形成的产物和中间体得以及时“除去”,使得金属表面保持“洁净”,这比通常的机械搅拌要有效得多。在其它类型的非均相反应中均有类似的作用,在某些使用相转移催化剂(PTC)的反应中甚至可以代替PTC。而在均相反应中的情况相对就要复杂得多,这里包括:(1)超声波引起的微泡爆裂时所产生的机械效应;(2)微泡爆裂时产生的高能环境(高温、高压);(3)微泡爆裂时从溶剂或反应试剂产生的活性物质, 如离子和游离基,如果离子和自由基存在竞争, 则有可能产生不同的产物〔2〕; (4) 超声波对溶剂本身结构的破坏。这些效应单一或共同作用的结果,使得反应体系的反应性能大大增强。

二、超声波在有机合成中的应用

1.氧化反应
这方面的研究尽管比较多,但真正用于合成目的的应用却很少。表1列出了几种氧化反应在超声波作用下的反应结果。
在高活性铋氧化剂的制备中〔7〕,用N2O3、 KMnO4、H2O2或SeO2不能直接将1氧化为2,因为2不稳定,C—Bi键太弱,而用超声波法却可顺利地制得2, 这个氧化剂可以方便地将伯醇氧化成醛,仲醇氧化成酮,收率都很高。

2.还原反应
有机还原反应中很多都采用金属或其它固体催化剂,超声波对这类反应的促进作用是明显的,尤其对某些大规模工业生产中的还原反应(如黄豆油和葵花油的催化氢化)优点更加明显。又如6-溴青霉素酯与锌在超声波作用下脱溴可得到很高产率的青霉素酯〔8〕。

这比通常所使用的脱溴试剂n-Bu3SnH或Pd-C/H2要清洁、有效得多,而且便宜。
表1 超声波促进下的氧化反应

反 应 物 产 物 反 应 条 件 收率(%)
KMnO4, 己烷, 搅拌5h
KMnO4, 己烷, 超声波辐射5h 2〔3〕
92
n-C7H15—CH2OH n-C7H15—CH2ONO2 60%HNO3, 室温, 搅拌12h 100〔4〕
n-C7H15—COOH 60%HNO3, 室温, 超声波辐射20min 100
Ph2CH—Br Ph2C=O 溴代物∶NaOCl(摩尔比)=1∶20, 超声波辐射2h 93〔5〕
Na2CO3*3/2H2O2, 搅拌7h
Na2CO3*3/2H2O2, 超声波辐射1h 48〔6〕
88

表2 超声波促进下的还原反应

反 应 物 产 物 反 应 条 件 收率(%)
� H3B*SMe2, THF, 25℃, 24h
H3B*SMe2, THF, 25℃, 超声波辐射1h 98〔9〕
98
Al-Hg, THF-H2O, 超声波辐射 69〔10〕
Zn-NiCl2(9∶1), EtOH-H2O(1∶1), 室温,超声波辐射2.5h 97〔11〕
H2, Pd/C, MeOH/AcOH, 超声波辐射 43〔12〕
Zn/HOAc, 15℃, 超声波辐射15min 100〔13〕
5α∶5β
=0.8∶1

3.加成反应及有关的反应
超声波在加成反应及相关的反应中的应用研究十分广泛,表3列出了部分反应的例子。 在下面的苯乙烯与四乙酸铅的反应中,反应条件对产物有很大的影响〔14〕, 该反应是离子和

自由基的竞争反应, 3自由基机理产生,5由离子机理产生, 而4则是这两种机理共同作用的结果。超声波有利于按自由基机理进行,在50℃下用超声波辐射1h,3的收率为38.7%,而搅拌15h只能得到33.1%的5。
在烯烃上直接引入F原子的报道很少,这一反应通常要用到一些危险品, 如F2 、 HF 、 HF-吡啶络合物、乙酰次氟酸盐等,操作需要特别小心。但在下面的反应中〔15〕,如采用超声波辐射的方法则可很方便地在双键上引入F原子。

在Simmons-Smith反应中,如没有活化的锌,反应是很难进行的,经典的方法是用碘或

锂作活化试剂,使锌和二碘甲烷与烯烃反应,由于反应突然放热,很难控制。1982年Repic首先对该反应进行了成功的改进,他使用超声波避免了活化过程,不仅避免了突然的放热,而且提高了产率。例如〔16〕

产率可达91%,而通常的方法则只有51%。这一方法已被成功地应用于大量生产,结果表明,即使用锌箔,甚至锌棒,也能得到同样好的结果。
类似的方法还可用于二磷环丙烷环的建立〔17〕。

在第一步反应中,超声波可使产物的收率从22%提高到94%,在第二步反应中,卡宾的产生需要正丁基锂或新制备的特丁醇钾,而使用超声波时,只需在己烷中使用过量的KOH和卤仿,就可得到定量的产物。
超声波能促进Diels-Alder反应的进行,并且能够改进其区域选择性〔18〕。例如

在苯中回流8h总收率为15%(a∶b=1∶1),而用超声波辐射1h收率为76%(a∶b=5∶1)。
Thibaud 等也报道了超声波可以大大加速环戊二烯与甲基乙烯基酮的Diels-Alder反应〔19〕。
同样,超声波对1,3-偶极环加成反应也有类似的作用〔20〕,例如

在传统的加热反应条件下反应34h,收率为80%,而用超声波辐射只需1h收率即可达81%。
在脱卤-环加成反应中,由于常常有固体金属的参与,超声波的使用往往对反应有很大的促进作用,这一方法已被成功地应用于糖化学中,例如〔21〕

在超声波及Zn-Cu偶的存在下卤代烃与α、β-不饱和混合物的作用通常得到的是加成

产物,但下面的化合物得到的是环丙烷化产物,而与α、β-不饱和混合物没有任何作用〔22〕。

表3 超声波在加成反应中的应用

反 应 物 产 物 反 应 条 件 收率(%)
四丁基溴化铵,50kHz超声波辐射,2h
四丁基溴化铵,搅拌11.7h 98〔23〕
78
THF,Zn-Ag,回流
THF,Zn-Ag,室温,超声波辐射 33.4〔24〕
88.9
PhCHO+BrCH2COOEt PHCH(OH)CH2COOEt 25-30℃,活化Zn粉、I2,超声波辐射5min
传统方法,12h 98〔25〕
61
CHCHCN
+CH3(CH2)13OH CH3(CH2)13O(CH2)2CN 搅拌,2h
超声波辐射,2h 0〔26〕
91.4
NaCN/PhSO2Cl,甲苯/H2O,超声波辐射
NaCN/PhSO2Cl,甲苯/H2O,搅拌 94〔27〕
40
4.取代反应
在下面的反应中〔35〕,如果使用常规方法,需要18-冠-6存在,反应3天以上,收率只有35%-70%; 而用超声波方法,不需使用冠醚,反应2-4h,收率可达80%以上。
一个有趣的反应是苄溴与甲苯和KCN在Al2O3作用下的反应〔36〕,如用机械搅拌得到的是83%的付-克取代产物,而用超声波辐射则得到76%的氰基取代产物,这里似乎存在着一个“化学开关”。

表4 超声波促进下的取代反应

反 应 物 产 物 反 应 条 件 收率(%)
PhCH2Br+KCN PhCH2CN H2O/KCN=0.61,甲苯,搅拌24h 55〔26〕
H2O/KCN=0.6,甲苯,超声波辐射,6h 68
RCOCl + KCN RCOCN 乙腈,50℃,超声波辐射 70-85〔29〕
四丁基溴化铵,放置6h 29
n-CH3(CH2)3Br KSCN CH3(CH2)3SCN 四丁基溴化铵,搅拌6h 43〔30〕
四丁基溴化铵,超声波辐射6h 62
Br(CH2)4Br t-BuOK,苯,40℃,搅拌6h
t-BuOK,苯,40℃,超声波辐射6h
28〔31〕
90
PhCCCl+PhSO2H+CuCO3 PhCSO2Ph 超声波辐射 73〔32〕
p-NO2C6H4Cl + PhOH p-NO2C6H4OPh Bu4NBr,K2CO3,超声波辐射 53.7〔33〕
Zn(OAc)2,(n-C8H17)4NBr,25℃,超声波辐射常规方法 65〔34〕
易消除

5.偶合反应
超声波在偶合反应中的应用研究也比较普遍,尤其是在Ullmann型偶合中,如在没有超声波的情况下,很少或根本就没有反应发生〔37〕。

超声波也能大大促进碘对活泼亚甲基化合物在Al2O3-KF催化下的氧化偶合,如:

收率可从65%提高到86%〔38〕。
另外,如氯硅烷的偶合〔39〕

在没有超声波的情况下反应是不能发生的。
α-不饱和酮的偶合通常得到的是混合物,但在超声波的作用下用Zn和三甲基氯硅烷反应,然后与Bu4NF一起水解可得到较高产率的片呐醇〔40〕。

室温,2h,u.s. 2*Bu4NF OHPhOHPh 50%
6.缩合反应
在Claisen-Schmidt缩合反应中〔41〕,采用超声波可使催化剂C-200的用量减少,反应时间缩短。

在典型的Atherton-Todd反应中,胺、亚胺及肟都易被磷酰化,而醇不能。但在超声波作用下,醇也能很顺利地磷酰化,且收率很高〔42〕。

表5 超声波在缩合反应中的应用

反 应 物 产 物 反 应 条 件 收率(%)
传统方法,7天
超声波辐射15min 60〔43〕
91
Al2O3,环己烷,80℃,超声波辐射24h 90〔44〕
EtCOOH + PhX EtCOOPh KOH,聚乙二醇,超声波辐射2h
机械搅拌2h 80〔45〕
44
N-甲基吡咯啉酮,65℃,105min
N-甲基吡咯啉酮,65℃,超声波辐射60min 48〔46〕
79
搅拌12h
超声波辐射0.75h 43〔47〕
75
PhCHO+(NH4)2CO3+NaCN 25℃,4—10天
45℃,超声波辐射3h 20〔48〕
73.6

7.歧化反应
Cannizzaro反应〔49〕

在没有超声波时,同样条件下反应不能发生。
8.水解反应
(1)酯的水解
超声波能促进羧酸酯的水解,例如〔50〕

而传统法回流1.5h产率只有15%。
在工业上一些很重要的物质,如甘油酯、菜油和羊毛蜡的皂化反应都能被超声波显着加速,这些多相反应可在比通常所使用的温度低得多的温度下进行,这样可以避免高温反应中出现的变色.
(2)酚羟基的脱保护
特丁基二甲硅基是酚羟基的一个最有用的保护基,但它现有的几种脱保护体系均存在这样或那样的缺点,如在超声波作用下用KF-Al2O3体系可得到很好的效果。例如〔51〕

使用3倍重量的KF-酸性Al2O3,以乙腈作溶剂室温反应48h,收率为82%,而将Al2O3改为碱性后同样条件下用超声波辐射45min收率即可达到81%。
(3)腈的水解〔52〕
在下列腈的水解中,超声波的使用不仅可以提高收率,而且可以避免使用相转移催化剂。

如Ar为萘基时,回流搅拌6h收率为63%,而将搅拌改为超声波辐射后收率可提高到98%。
9.其它
(1)难制备的金属有机化合物的制备
对于难制备的格氏试剂,超声波能大大缩短其制备所需的时间,增强其活性。超声波也能用于有机Al、Sn等化合物的制备,例如〔53,54〕

(2)Wittig-Horner 反应

碱u.s.R1R2CHR3

R=CO2R4,CN,SO2R5

使用常规方法虽也可得到比较高的收率,但反应时间一般很长。使用超声波时,不仅可以大大缩短反应时间,而且可减少催化剂的用量,另外反应于室温下进行即可〔55,56〕。
(3)胶粒钾的制备
许多有价值的有机合成都要使用到碱金属,使用中常常选用不同的介质将其分散为如沙粒大小的颗粒,或者将其吸附在Al2O3、SiO2、木炭或石墨上,需要时间长且不安全,Luche等用超声波技术取得了胶粒钾,并用于Dieckman缩合〔57〕。具体方法是在氩气保护下于100℃左右用超声波辐射置于干甲苯或二甲苯中的钾,银蓝色迅速出现,几分钟后碎钾片即消失,便可得到精细的悬浮于溶剂中的钾,当把胶粒钾在室温下加到含有辛二酸二乙酯的甲苯溶液中时,几分钟内蓝色消失,得到83%的2-氧代环戊烷羧酸乙酯。

(4)烯烃构型的转化〔58〕

R-Br的蒸气压对反应有较大影响,较大的蒸气压对反应有利。
(5)重排反应
在下面的脱硫反应中,即使是在易挥发的溶剂 ,如乙醇中,以及使用低能量的超声波清洗器作为超声源,反应也能充分地进行〔59〕。

在下面的Arndt-Eistert反应中〔60〕,室温下使用超声波辐射2min,收率为92%,而传统方法需2h,收率为88%。

(6)金属有机络合物的制备〔61〕

(7)杂原子-金属键的形成如:

这样制得的盐的反应活性比用通常方法制得的盐要高得多〔62〕。
又如在双有机膦负离子中含有一个有用的结构单元,可用于制备不同的单或双膦化合物,它可以通过用锂来断裂P-Ph键的方法得到,这一过程可为超声波所大大加速〔63〕。

三、结 语

可以看出,超声波在有机合成中的应用研究已经十分广泛,对各种类型的反应几乎都有不同程度的促进作用,但也并非所有的研究都是正结果。如在下面的反应中,用甲苯作溶剂超声波对其没有什么促进作用,如用水作溶剂时有轻微的副作用(收率从19%降低到13%)。同时超声波也不是对所有的反应都会有作用的。目前超声波的应用还缺乏应有的理论指导,尽管如此,超声波的作用还是显而易见的。限于篇幅,我们不可能将所有这方面的资料都包括在本文中,本文的目的是使合成化学家们对这一新的有机合成手段有所了解。这个方法确有它独特的优点,而且操作又十分简便,我们有理由相信,在不久的将来,无论是在理论上还是在应用上,超声波方法都会得到蓬勃的发展,成为有机合成研究中的一种重要手段,超声波仪器也将会成为合成化学家们常用的仪器

⑺ 李志平的研究兴趣

李志平教授的主要研究方向是利用金属有机化合物研究高效高选择性有机合成新反应、新方法和高(小)分子功能性化合物的合成及其性质,研究的目标是发现和发展基于绿色化学为基础的新合成方法学,探索新一代物质转化的途径。
主要研究方向有以下几个方面:
(1)高效高选择性有机合成新方法学研究;
(2)功能有机高(小)分子材料的合成以及性质研究
(3)烯烃仿生甲基化新方法学的基础研究;
(4)铁催化剂在有机合成中的新方法学。

⑻ 有机合成的方法有哪些

一、有机合成的过程
[思考与交流]阅读第三自然段,回答:
1、什么是有机合成?2、有机合成的任务有那些?3、用示意图表示出有机合成过程。
【板书】1、有机合成定义;有机合成是利用简单、易得的原料,通过有机反应,生成具有特定结构和功能的有机化合物。
2、有机合成的任务;包括目标化合物分子骨架构建和官能团的转化。
3、有机合成过程。
【投影】有机合成过程示意图:

【讲】有机合成的过程是利用简单的试剂作为基础原料,通过有机反应链上官能团或一段碳链,得到一个中间体;在此基础上利用中间体上的官能团,加上辅助原料,进行第二步反应,合成第二个中间体,经过多步反应,按照目标化合物的要求,合成具有一定碳原子数目、一定结构的目标化合物。
【板书】4、有机合成的思路:就是通过有机反应构建目标分子的骨架,并引入或转化所需的官能团。
【思考与交流】官能团的引入方法
1、在碳链上引入C=C的三种方法:(1) (2) (3) 。
2、在碳链上引入卤素原子的三种方法:(1) (2) (3) 。
3、在碳链上引入羟基的四种方法:(1) (2) (3) (4) 。
【投影】学生汇报,评价,总结:

官能团的引入
引入-OH
烯烃与水加成,醛/酮加氢,卤代烃水解,酯的水解
引入-X
烃与X2取代,不饱和烃与HX或X2加成,醇与HX取代
引入C=C
某些醇和卤代烃的消去,炔烃加氢
引入-CHO
某些醇氧化,烯氧化,炔水化,糖类水解
引入-COOH
醛氧化,苯的同系物被强氧化剂氧化,羧酸盐酸化,酯酸性水解
引入-COO-
酯化反应

【讲】除了官能团的引入,也可通过反应消除官能团,主要包括以下方法:通过有机物加成可消除不饱和键;通过消去、氧化或酯化可消除羧基;通过消去或取代可消除卤原子。
【板书】5、有机合成的关键—碳骨架的构建。
【问】如何增长碳链?
【讲】有机合成题中碳链的增长,一般会以信息的形式给出,常见的增长的方式有如下:
【投影】(1)加成反应:
(2)卤代烃+NaCN: CH3CH2Br+NaCN
【问】如何缩短碳链?
1、脱羧反应。如:RCOONa+NaOH RH+Na2CO3
2、氧化反应,包括燃烧,烯、炔的部分氧化,丁烷的直接氧化成乙酸,苯的同系物氧化成苯甲酸等。如:


3、水解反应。主要包括酯的水解,蛋白质的水解和多糖的水解。如:

【板书】二、逆合成分析法
1、合成设计思路:
【讲】有机合成的解题思路是:首先要正确判断需合成的有机物的类别,它含有哪种官能团,与哪些知识信息有关;其次是根据现在的原料、信息和有关反应规律,尽可能合理地把目标化合物分成若干片段,或寻找官能团的引入、转换、保护方法,或设法将各片段拼凑衍变,尽快找出合成目标化合物的关键;最后将正向推导和逆向推导得出的若干个合成路线加以综合比较,选择出最佳的合成方案。
【投影】有机合成的设计思路

【板书】2、有机合成路线的设计
【讲】有机合成的方法包括正向合成分析法和逆向合成分析法。
【讲】正向合成分析法是从已知的原料入手,找出合成所需要的真接或间接的中间体,逐步推向合成的目标有机物,而逆向合成分析法是在设计复杂化合物的合成路线时常用的方法。它是将目标化合物倒退一步寻找上一步反应的中间体,该中间体同辅助原料反应可以得到目标化合物,而这个中间体,又可以由上一步的中间体得到,依次类推,最后确定最适宜的基础原料和最终的合成路线。
【投影】逆合成分析示意图:

【讲解】逆推法合成有机物思路
【探究】用绿色化学的角度出发,有机合成的设计有哪些注意事项?
【讲】不使用有毒原料;不产生有毒副产物;产率尽可能高等
【板书】 3、解题思路:
(1) 剖析要合成的物质(目标分子),选择原料,路线(正向,逆向思维.结合题给信息)
(2) 合理的合成路线由什么基本反应完全,目标分子骨架
(3) 目标分子中官能团引入
【投影】

【点击试题】阅读课本,以 (草酸二乙酯)为例,说明逆推法在有机合成中的应用。
(1)分析草酸二乙酯,官能团有 ;
(2)反推,酯是由酸和醇合成的,则反应物为 和 ;
(3)反推,酸是由醇氧化成醛再氧化酸来的,则可推出醇为
(4)反推,此醇A与乙醇的不同之处在于 。此醇羟基的引入可用B ;
(5)反推,乙醇的引入可用 ,或 ;
(6)由乙烯可用 制得B。

【投影】分析思路:

【投影】书写上述6步的化学反应方程式:

【点击试题】用乙炔和适当的无机试剂为原料,合成 。
资料1

资料2

【讲】从原料到产品在结构上产生两种变化:①从碳链化合物变为芳环化合物;②官能团从“—C≡C—”变为“—Br”。由顺推法可知:由乙炔聚合可得苯环,如果由苯直接溴代,只能得到溴苯,要想直接得到均三溴苯很难。我们只能采取间接溴代的方法,即只有将苯先变为苯酚或苯胺,再溴代方可;而三溴苯酚中的“—OH”难以除去。而根据资料2可知, 中的“—NH2”
可通过转化为重氮盐,再进行放氮反应除去。答案:
【投影】

⑼ 有机合成方法

有机合成的常规方法1.羟基的引入

(1)烯烃与水加成

(2)醛酮与氢气加成

(3)卤代烃的水解

(4)酯的水解

2.卤原子的引入

(1)烃与卤素的取代

(2)不饱和烃与卤化氢、卤素的加成

(3)醇与卤化氢的取代

3.双键的引入

(1)卤代烃的消去反应

(2)醇的消去反应

(3)炔烃不完全加成

4.加成消不饱和键

5.消去、氧化、酯化除羟基

6.加成、氧化、除醛基

7.不同官能团间的转换

8.通过某种途径使一个官能团变为两个

9.通过某种途径使官能团的位置

阅读全文

与有机合成新方法研究相关的资料

热点内容
女性最佳取环方法 浏览:361
手机信号最强的方法 浏览:800
图片粘贴排版方法视频 浏览:371
抗疫和防疫的方法和技巧手抄报 浏览:73
小学生如何能快速答卷的方法 浏览:74
当体温升高时常用哪些方法降温 浏览:38
车窗抛物方法视频教程 浏览:604
盐水去头屑的最佳方法 浏览:227
冬季开花花卉怎么养正确方法图文 浏览:957
如何制作腐植酸的方法 浏览:47
体育信息的研究方法 浏览:320
口袋最简单的方法怎么折呢 浏览:18
压力表的常见问题和解决方法 浏览:153
肾上腺素的释放水平检测方法 浏览:281
仪表总耗气量的计算方法有哪些 浏览:923
每天百分比计算方法 浏览:178
98乘以99分之8的简便方法 浏览:492
如何求零点解决方法 浏览:416
购买佛壁的正确方法图解 浏览:478
如何快速学好基本功的方法 浏览:329