㈠ 吸附色谱中常用的吸附剂种类及其应用范围和原理
常用的吸附剂有以碳质为原料的各种活性炭吸附剂和金属、非金属氧化物类吸附剂(如硅胶、氧化铝、分子筛、天然黏土等)。
衡量吸附剂的主要指标有:对不同气体杂质的吸附容量、磨耗率、松装堆积密度、比表面积、抗压碎强度等。用于滤除毒气,精炼石油和植物油,防止病毒和霉菌,回收天然气中的汽油以及食糖和其他带色物质脱色等。
工业上常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,极大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。
是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。活化方法可分为两大类,即药剂活化法和气体活化法。药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中加热进行炭化和活化。气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。活性炭含有很多毛细孔构造所以具有优异的吸附能力。因而它用途遍及水处理、脱色、气体吸附等各个方面。
㈡ 吸附色谱和分配色谱有什么不同
一、吸附色谱(adsorption
chromatography)
又叫液固色谱法:流动相是液体,固定相是固体。
分离原理:固定相是固体吸附剂,吸附剂是多孔性微粒物质表面有吸附中心。样品组分与流动相竞争吸附中心。各组分的吸附能力不同,使组分在固定相中产生保留时间不同和实现分离。
固定相:
固定相通常是强极性的硅胶、氧化铝、活性炭、聚乙烯、聚酰胺等固体吸附剂。活性硅胶最常用。
流动相:
弱极性有机溶剂或非极性溶剂与极性溶剂的混合物,如正构烷烃(己烷、戊烷、庚烷等)、二氯甲烷/甲醇、乙酸乙酯/乙腈等。
应用:
对于极性,结构异构体分离和族分离仍是最有效的方法,如农药异构体分离、石油中烷、烯、芳烃的分离。
缺点是容易产生不对称峰和拖尾现象。
二、分配色谱
原理:
固定液机械的吸附在惰性载体上,样品分子依据他们在流动相和固定相间的溶解度不同,分别进入两相分配而实现分离。
固定相:将一种极性或非极性固定液吸附在惰性固相载体上。如全多孔微粒硅胶吸附剂。
根据极性不同分类:
正相分配色谱—固定相载体上涂布的是极性固定液;
流动相是非极性溶剂;
可分立极性较强的水溶性样品;
弱极性组分先洗脱出来。
反相分配色谱—固定相载体上涂布的是非极性或弱极性固定液;
流动相是极性溶剂;
强极性组分先洗脱出来。
液-液分配色谱固定相中的固定液体往往容易溶解到流动相中去,所以重现性很差,且不能进行梯度洗脱,已经不大为人们所采用。
㈢ 吸附色谱法的介绍
吸附色谱法常叫做液-固色谱法(Liquid-Solid Chromatography,简称LSC),它是基于在溶质和用作固定固体吸附剂上的固定活性位点之间的相互作用。
㈣ 急求帮忙,,试回答下列各种色谱方法分离化合物的简单原理、特点和应用范围
它们分别代表:空间排阻色谱法、吸附色谱法、分配色谱法、离子交换色谱法;
分配色谱法:利用被分离组分在固定相与流动相中的溶解度差别所造成的分配系数差别而被分离。根据流动相和固定相的极性,可分为正相色谱和反相色谱,用正相色谱可分离极性、中等级性的化合物;利用方向色谱可分离弱极性和非极性化合物。
吸附色谱法:各组分与流动相分子争夺吸附剂表面活性中心,利用吸附剂对不同组分的吸附能力差异而实现分离。适用:分析酸性或中性物质。
离子交换色谱法:依据被测组分与离子交换剂交换能力(亲和力)不同而实现分离。适合分离离子化合物。
空间排阻色谱法:利用被测组分分子大小不同、在固定相上选择性渗透实现分离。适合分离大分子化合物。
㈤ 色谱技术应用于哪些领域
色谱法(层析法)是现代分析化学中重要的分离、分析技术,它是由俄国植物学家茨维特发明的。
茨维特早年曾在日内瓦大学学习物理学、化学,对物质的物理、化学属性有了些了解。回国后,他致力于用物理学、化学的理论和方法研究植物学,强调深入细胞内部研究。比起同行,他的观点富有创意,也正是这种创新精神才导致新方法的发明。
茨维特的研究课题是叶绿体,他认为叶绿体是叶绿素和清蛋白的混合物——叶绿蛋白。它成分复杂,含有不止一种绿色色素。此观点当时不被认同。他力图通过实验证明自己的结论。多次实验后,他发现存在两种叶绿素:叶绿素a和b。叶绿素a当时已经被提纯了,但叶绿素b尚无法制得。为使理论更有说服力,他决心把叶绿素b从溶液中分离出来。经过不断实验和摸索,他发明了极其简单却十分有效的分离仪器:一根玻璃管填充以白垩或氧化铝。不同物质在流动相中有不同吸附系数,含有多种组分的物质通过吸附柱后依次有规律地排列,这样就将物质分离出来且不改变原性状。他把此方法与多色光通过棱镜分色类比,把新方法命名为色谱法。利用色谱法,他顺利分离出了叶绿素b,证实了自己的理论。
科学界对这种简单仪器的可靠性持怀疑态度,认为缺乏理论依据且实验数据不可靠。后来茨维特详细阐述了色谱过程的理论依据,公布了对大量物质吸附特性的研究,还用它分离出类胡萝卜素等重要物质。虽然色谱法已为众人所知,但遗憾的是直至茨维特去世也没得到推广。
经后人努力,色谱技术得到发展,被广泛应用于化学、生物学、医药学、石油化工等领域,在科学和工业的发展中发挥着重要作用。
㈥ 常见的色谱分离方法有哪些
常用的蛋白质纯化方法有离子交换色谱、亲和色谱、电泳、疏水色谱等等 离子交换色谱:蛋白质和氨基酸一样会两性解离,所带电荷决定于溶液pH。pH小于pI时蛋白质带正电,pH大于pI时蛋白质带负电。不同蛋白质等电点的蛋白质在同一个溶液中,表面电荷情况不同。离子交换就是利用不同蛋白质在同一溶液中表面电荷的差异来实现分离的。 亲和色谱:生物大分子有一个特性,某些分子或基因对它们有特异性很强的吸附作用。如镍柱中Ni可以与His标签的蛋白结合,这种只针对一种或一类物质的吸附就是亲和色谱的原理。 电泳:SDS-聚丙烯酰胺凝胶电泳,SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中, 与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。 疏水色谱:疏水色谱基于蛋白质表面的疏水区与介质疏水配体间的相互作用...
㈦ 吸附色谱分离法有哪些 该法的优缺点是什么啊
有层析色谱,离子交换色谱等。优点是可以实现常规不容易分离物质的分离,分离效率高。缺点嘛,这个没有可比性,没法讲的。来源:分离材料网
㈧ 常用的色谱介质有哪些,各适用于何种状况下的分离
1、色谱方法根据分离机制的不同可分为吸附色谱、分配色谱、离子交换色谱、凝胶过滤(分子筛)色谱和亲和色谱等.2、(1)吸附色谱法是指混合物随流动相通过吸附剂时,由于该吸附剂对不同物质有不同的吸附力而使混合物分离的方法.(2)分配色谱系法是利用固定相与流动相之间对待分离组分溶解度的差异来实现分离.(3)离子交换色谱法是利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法.凡在溶液中能够电离的物质通常都可以用离子交换色谱法进行分离.(4)凝胶色谱法又叫凝胶色谱技术,是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果.(5)亲和色谱法是将相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法.
㈨ 液相色谱中吸附色谱法有什么特点
吸附色谱法的固定相为吸附剂,色谱的分离过程是在吸附剂表面进行的,不进入固定相的内部。与气相色谱不同,流动相(即溶剂)分子也与吸附剂表面发生吸附作用。在吸附剂表面,样品分子与流动相分子进行吸附竞争,因此流动相的选择对分离效果有很大的影响,一般可采用梯度淋洗法来提高色谱分离效率。在聚合物的分析中,吸附色谱一般用来分离添加剂,如偶氮染料、抗氧化剂、表面活性剂等,也可用于石油烃类的组成分析。