Ⅰ 工程材料测试题武汉理工大学考试试题(含原题)2014年
武汉理工大学材料科学与工程学院的硕士研究生录取分数线一般为305分左右。武汉理工大学材料科学与工程学院的硕士研究生研究方向: 01材料物理与化学 02材料学 03 材料加工工程 04 建筑材料与工程 05生物材料学 06复合材料学 07光电子及信息材料 08 新能源材料考试科目: ①101思想政治理论 ②201英语一、203日语(选一) ③302数学二 ④833材料科学基础、834物理光学、835高分子化学、836材料成型原理(选一)复试内容:复试内容含笔试和面试两部分内容。 1、笔试:主要考核学生的专业素质和能力,包括材料学、材料物理与化学、材料成型技术、材料测试技术等内容。满分100分,成绩大于或等于60分为合格,不合格者不予录取。 2、面试:主要考核学生的外语能力、综合素质和专业能力。面试环节为考生中英文自我陈述(2分钟)、面试委员质询及考生回答问题(8~10分钟)。满分100分,成绩大于或等于60分为合格,不合格者不能录取。
Ⅱ 同济大学材料专业研究生考试科目
同济大学2009年材料学材料研究方法考研试题
1、简述什么是非均质体光率体,哪些晶系体现了非晶系光率体,光在这些光率体中传播情况如何?
2、简述特征X射线是如何产生的,以及X射线衍射实验影响因素?
3、简述扫描电镜工作原理,以及举例说明在材料研究中的应用。
4、写出乙醇的NMR谱图,并说明图谱显示信息,并简述影响核磁共振化学位移的主要因素。
5、结合自己所学专业已经了解的研究方法和手段,举例说明如何使用此分析方法揭示物质的结构特征。
6、简述透射电镜在材料研究中的应用。
7、关于X粉末衍射的原理及应用。
8、驰豫的分类9、如何运用材料研究手段分析玻璃转化,氧化,析晶,热分解,并说明热分析在材料研究中的应用。
考试科目由于2010年招生简章还没有公布,所以你暂时可以看2009年的,《全国各招生单位2009年硕士研究生招生简章》,你可以借鉴。
Ⅲ 北航材料科学与工程学院考研初试专业课都考什么
2023年最新考研专业课大合集网络网盘下载
链接:https://pan..com/s/1IUttnfoJ9Aq4ICg5GM7zDQ
提取码:1234
简介:2023年最新考研专业课,包括理工科、艺术、体育、管理、计算机、外语、医药等专业,讲义、视频大合集。
Ⅳ 材料现代分析测试方法有哪些,详细介绍
1,X射线衍射分析技术
2,电子显微镜分析技术
3,热分析技术
4,红外光谱分析
详情可以看由天津大学,杜希文教授,编写了《材料分析方法》教材,该教材一经出版其编写思路受到同行的关注,2006年入选国家“十一五”规划教材,2007年被评为国家高等教育精品教材。与此同时,项目组对课程的实验环节进行了精心设计,完成了验证型实验向设计型实验的转变,受到校内外专家的好评,2008年“材料现代研究方法”被评为天津市精品课程,课程负责人杜希文教授和主讲教师赵乃勤教师获得天津大学教学名师称号,主讲教师侯峰获天津市青年教师授课竞赛一等奖。2009年,以本课程为主要内容的教改项目“材料类复合型人才实践教学体系的综合改革与实践”“ 获得天津市教学成果一等奖。
Ⅳ 材料测试分析技术有哪些
材料分析方法:
1、化学分析:化学分析又称经典分析,包括滴定分析和重量分析两部分,是根据样品的量、反应产物的量或所消耗试剂的量及反应的化学计量关系,经计算得待测组分的含量。化学分析是鉴别材料中附加成分的种类、含量,是剖析材料组成、准确定量的必要手段。
2、差热分析:热分析是研究热力学参数或物理参数与温度变化关系分析的方法,可分性材料晶型转变、熔融、吸附、脱水、分解等物理性质,在物理、化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等领域得到广泛应用。通过热分析技术的综合应用可以判断材料种类、材料组分含量、筛选目标材料、对材料加工条件、 使用条件做出准确的预判,是材料分析过程中非常重要的组成部分。
3、元素分析:元素分析是研究被测元素原子的中外层电子由基态向激发态跃迁时吸收或者放出的特征谱线的一种分析手段,通过特征谱线的分析可了解待测材料的元素组成、化学键、原子含量及相对浓度。元素分析针对材料中非常规组分进行前期元素分析,辅助和佐证色谱分析,是材料分析中必不可少的环节。
4、光谱分析:光谱分析是通过对材料的发射光谱、吸收光谱、荧光光谱等特征光谱进行研究以分析物质结构特征或含量的方法,光谱分析根据光的波长分为可见、红外、紫外、X射线光谱分析。利用光谱分析可以精确、迅速、灵敏的鉴别材料、分析材料分子结构、确定化学组成和相对含量。是材料分析过程中对材料进行定性分析首要步骤。
5、色谱分析:是材料不同组分分子在固定相和流动相之间分配平衡的过程中,不同组分在固定相上相互分离,已达到对材料定性分析、定量的目的。根据分离机制,色谱分析可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等分析类别,通过各种色谱技术的综合运用,可实现各种材料的组分分离、定量、定性分析。
6、联用(接口)技术:通过不同模式和类型的热分析技术与色谱、光谱、质谱联用(接口)技术实现对多组分复杂样品体系的分析,可完成组分多样性、体系多样性的材料精确、灵敏、快捷的组分、组成测试,是非常规材料剖析过程中不可或缺分析方法。
Ⅵ 结合高分子材料近代测试技术,如何将相关知识和数学模型方法用于对高分子材料领域工程问题的解决
介电特性是电介质材料极其重要的性质。在实际应用中,电介质材料的介电系数和介质损耗是非常重要的参数。例如,制造电容器的材料要求介电系数尽量大,而介质损耗尽量小。相反地,制造仪表绝缘器件的材料则要求介电系数和介质损耗都尽量小。而在某些特殊情况下,则要求材料的介质损耗较大。所以,通过测定介电常数(ε)及介质损耗角正切(tgδ),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。
一、实验目的
1、探讨介质极化与介电常数、介质损耗的关系;
2、了解高频Q表的工作原理;
3、掌握室温下用高频Q表测定材料的介电常数和介质损耗角正切值。
二、实验原理
按照物质电结构的观点,任何物质都是由不同的电荷构成,而在电介质中存在原子、分子和离子等。当固体电介质置于电场中后会显示出一定的极性,这个过程称为极化。对不同的材料、温度和频率,各种极化过程的影响不同。
1、介电常数(ε):某一电介质(如硅酸盐、高分子材料)组成的电容器在一定电压作用下所得到的电容量Cx与同样大小的介质为真空的电容器的电容量Co之比值,被称为该电介质材料的相对介电常数。
式中:Cx —电容器两极板充满介质时的电容;
Cο —电容器两极板为真空时的电容;
ε —电容量增加的倍数,即相对介电常数
介电常数的大小表示该介质中空间电荷互相作用减弱的程度。作为高频绝缘材料,ε要小,特别是用于高压绝缘时。在制造高电容器时,则要求ε要大,特别是小型电容器。
在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电常数。此外,由于介电常数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。所以,通过介电常数随电场强度、频率和温度变化规律的研究,还可以推断绝缘材料的分子结构。
2.介电损耗(tgδ):指电介质材料在外电场作用下发热而损耗的那部分能量。在直流电场作用下,介质没有周期性损耗,基本上是稳态电流造成的损耗;在交流电场作用下,介质损耗除了稳态电流损耗外,还有各种交流损耗。由于电场的频繁转向,电介质中的损耗要比直流电场作用时大许多(有时达到几千倍),因此介质损耗通常是指交流损耗。
在工程中,常将介电损耗用介质损耗角正切tgδ来表示。tgδ是绝缘体的无效消耗的能量对有效输入的比例,它表示材料在一周期内热功率损耗与贮存之比,是衡量材料损耗程度的物理量。
tg
Ⅶ 材料分析测试方法的内容简介
X射线衍射分析内容包括X射线物理学基础、X射线衍射原理、多晶材料X射线衍射分析方法和部分X射线衍射的实际应用。透射电子显微分析内容包括电子光学基础和电镜结构、电子衍射和电子显微图像衬度原理。扫描电子显微镜分析和电子探针微区分析内容包括仪器的工作原理和分析方法。光谱分析内容包括光谱学基础、原子光谱和分子光谱的简介。扫描探针显微镜内容包括扫描隧道显微镜和原子力显微镜的工作原理、工作模式及应用,介绍了X射线光电子能谱的原理与应用。
本书可以作为材料科学与工程学科的本科生教材,也可以作为研究生和从事材料科学研究与分析测试的工程技术人员的参考书。
Ⅷ 研究金属材料有哪些分析测试技术希望答的全面一些,并说明哪些是最基础的。
观察显微组织:
1.光学显微镜OM放大倍数在10-5000倍之间,可以看出金属材料内部晶粒的形状和大小,并测出晶粒的直径,
2.扫描电镜.英文缩写SEM 放大倍数可以高达几万倍,可以观察到微米级别的甚至纳米级别的内部结构。观察内部组织,晶粒形状和大小,可以观察表面不平整的金属内部结构,观察金属断裂断口。
3.XRD X-ray diffraction X射线衍射仪 可以用来测量晶粒直径在几纳米-50nm之间的晶粒直径,可以分析枳构。
4.TEM 透射电镜,可以用来观察位错密度,观看衍射斑,测出大角度晶界和小角度晶界。可观测到的晶粒尺寸更小,可观察纳米级别晶粒。
力学性能:
使用万能材料试验机可以生成应力应变曲线测出材料的:弹性极限,屈服强度,断裂强度,延伸率。
洛式硬度仪,布氏硬度测试金属材料的硬度。
Ⅸ 材料研究方法的介绍
本书介绍了材料研究常用的分析测试方法,包括光学显微分析、x射线衍射分析、电子衍射分析、电子显微分析、热分析、光谱分析、核磁共振分析、色谱分析、质谱分析等分析方法以及这些方法在材料测试中的综合应用。本书着重论述分析测试方法的基本原理、样品制备及应用,内容力求简明实用,具有适应学科范围广的教学特点,并尽可能展现最先进的分析测试方法,如环境扫描电镜和原子力显微镜等。