导航:首页 > 研究方法 > 初中几何解题方法与分析

初中几何解题方法与分析

发布时间:2022-01-08 23:33:57

‘壹’ 数学几何题解题技巧初二

初中数学几何尤其是在初二几何入门的时候,大家几乎都会觉得几何证明题难做,其实还是没有掌握好初中数学几何证明题的答题技巧和解题思路。那么怎么才能学好初中几何的题呢?

1按定义添辅助线:

如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:

每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下:

(1)平行线是个基本图形:

当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形

出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:

全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线

(7)相似三角形:

相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。

(8)特殊角直角三角形

当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明

(9)半圆上的圆周角

出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。

1.三角形问题添加辅助线方法

方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于

第一条线段,而另一部分等于第二条线段。

2.平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:

(1)连对角线或平移对角线:

(2)过顶点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.

3.梯形中常用辅助线的添法

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:

(1)在梯形内部平移一腰。

(2)梯形外平移一腰

(3)梯形内平移两腰

(4)延长两腰

(5)过梯形上底的两端点向下底作高

(6)平移对角线

(7)连接梯形一顶点及一腰的中点。

(8)过一腰的中点作另一腰的平行线。

(9)作中位线

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。

4.圆中常用辅助线的添法

(1)见弦作弦心距

有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。

(2)见直径作圆周角

在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

(3)见切线作半径

命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。

(4)两圆相切作公切线

对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。

(5)两圆相交作公共弦

对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。

也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;

实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用

‘贰’ 求初中几何题解题思路与主要方法

学会用一下几大数学思想指导解题即可:数形结合思想、分类讨论思想、方程与函数思想、归化和转化思想.(数形结合思想用得比较多,注意平常做题时多总结一下,多练一下)

‘叁’ 初中几何解题方法

我记得有一个总的原则是把平行四边形/梯形等的分成长方形和三角形,因为长方形不论边还是角都有很多特性,三角形的话理论很多,还有就是,不管问题最后求什么,你先把已知的条件列出来,推一推,看能得到什么,一直推,说不好过程中答案就有了,就算的不到答案,那么把你知道的,能推出来的写上,老师也会酌情给分的,也许答案你已经腿出来了,只是你没看到,这种情况下老师会扣掉两三分,你的得分情况还是很乐观的,千万别觉得自己没答案就什么都不写!呵呵```学姐只能教你这么多了!

‘肆’ 初中几何解题技巧

首先看图形 猜想出题人要考什么然后读题,见到关键词就画辅助线 作辅助线的方法和技巧 :
题中有角平分线,可向两边作垂线。
线段垂直平分线,可向两端把线连。
三角形中两中点,连结则成中位线。
三角形中有中线,延长中线同样长。
成比例,正相似,经常要作平行线。
圆外若有一切线,切点圆心把线连。
如果两圆内外切,经过切点作切线。
两圆相交于两点,一般作它公共弦。
是直径,成半圆,想做直角把线连。
作等角,添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线

‘伍’ 初中几何问题快速解决思路与提高效率的方法

数学题目的解决其实要靠我们基础知识系统的网络化。能够看一点而直到全身。最重要的是各个知识点的练习,这个要靠合理科学的练习*(不一定大量练题,但是一定要对题目进行分析总结)。
其次,要会审题。能很快对问题进行逆推。找到解题的根本条件。(特别是几何证明)一定要会逆推条件。
说的比较笼统,关键要记住。
1抓好基础知识,建立各个知识的连接。
2要会审题,能逆向思考。找出那个关键的缺少条件。

‘陆’ 初中几何综合题解题技巧


我以前也问过这个问题的。
你可以去我的问题库里看看。
不过也是像你一样没有什么好答案。
但是后来自己收集了一些
一起交流啊。

‘柒’ 怎样解题初中平面几何解题方法与技巧 主要内容

平面几何要掌握好多个基本公式(圆的,三角形的,解析几何等),而且有三条线索解题:
将全部已知量列下来,并仔细观察,推导其它未知量
寻找能推导出需求量的直接条件,再找该条件的需求条件...最后就可以倒推到已知量
用平面直角坐标系辅助,将几何转为代数
当然,前提是掌握公式很熟练!

‘捌’ 初中几何解题方法与分析的目录

第一章 图形初步认识
1.1 多姿多彩的图形
考点提示
经典例题
强化训练
答案与提示
1.2 直线、射线、线段
考点提示
经典例题
强化训练
答案与提示
1.3 角的度量
考点提示
经典例题
强化训练
答案与提示
1.4 角的比较与运算
考点提示
经典例题
强化训练
答案与提示
第二章 相交线与平行线
2.1 相交线
考点提示
经典例题
强化训练
答案与提示
2.2 平行线
考点提示
经典例题
强化训练
答案与提示
2.3 平行线的性质
考点提示
经典例题
强化训练
答案与提示
2.4 平移
考点提示
经典例题
强化训练
答案与提示
第三章 平面直角坐标系
3.1 平面直角坐标系
考点提示
经典例题
强化训练
答案与提示
3.2 坐标方法的简单应用
考点提示
经典例题
强化训练
答案与提示
第四章 三角形
4.1 与三角形有关的线段
考点提示
经典例题
强化训练
答案与提示
4.2 与三角形有关的角
考点提示
经典例题
强化训练
答案与提示
4.3 多边形及其内角和
考点提示
经典例题
强化训练
答案与提示
4.4 课题学习镶嵌
考点提示
经典例题
强化训练
答案与提示

‘玖’ 初中几何解题方法与分析的介绍

《初中几何解题方法与分析》是2008年9月1日北京出版集团公司,北京教育出版社出版的图书。

阅读全文

与初中几何解题方法与分析相关的资料

热点内容
如何恢复快充方法 浏览:113
导航连接车载的方法 浏览:385
重复接地最佳方法 浏览:282
女性快乐器使用方法 浏览:294
研究媒介文化的方法 浏览:962
矩法度量常用的方法 浏览:221
小米六飞行模式在哪里设置方法 浏览:114
如何在学校减肥的最好方法 浏览:88
电动车转把三速正确接线方法 浏览:814
快速减肥用什么方法 浏览:475
电子表格如何快速居中靠左方法 浏览:924
老人发烧如何退烧最有效的方法 浏览:668
倩碧晚霜使用方法 浏览:218
数学课的力量训练方法 浏览:370
酒枣如何腌制方法 浏览:572
车衣使用方法视频 浏览:438
什么能止痒最快方法 浏览:488
别克英朗防雨条的安装方法 浏览:248
企业会计制度设计常用的方法 浏览:215
苏泊尔净水器使用方法 浏览:467