圆周率的计算方法很多,经典的如下:
1.古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。2.Archimedes用正96边形得到圆周率小数点后3位的精度;
3.刘徽用正3072边形得到5位精度;
4.Ludolph
Van
Ceulen用正262边形得到了35位精度。
圆周率的计算方式的种类无法计量,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。
2. 圆周率的计算公式
圆周率(Pi)是圆的周长与直径的比值,公式为:
(2)圆周率的计算方法扩展阅读
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙(observable universe)的大小,误差还不到一个原子的体积 。
以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
π在许多数学领域都有非常重要的作用。
3. 圆周率计算方法公式
圆周率,在古代用割圆术来求得,而现在常常用电脑来求,但电脑是把圆的周长和直径化为二进制,然后把两者相除,得到圆周率。
所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。“圆,一中同长也”。意思是说:平面内到定点的距离等于定长的点的集合。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在(2021年)所熟悉的公式。
中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为3:1)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的周长一直算到了正三百零七十二边形,并由此而求得了圆周率 为3.1415和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于使圆周率精确到了小数点以后的第七位。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.。约率是3 1/7,精确到小数点后第二位,“周二十二径七”,密率是3 16/113,“周三百五十五径一百一十三”。
希望我能帮助你解疑释惑。
4. 圆周率的公式
圆周率(π)是圆的周长与直径的比值,用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。它是一个小数后无限不循环的数。无数数学家前辈们,历代尽心计算至今已算到小点后31亿万位。π=3.......
设圆周长为L ,圆直径为D, 则圆周率的公式是π=L/D.
3.1415926(49310872894333843797856......)括号内的数都是错的!
5. 圆周率正确计算方法
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
6. 圆周率是怎么计算出来的啊
古希腊大数学家阿基米德开创了人类历史上通过理论计算圆周率近似值的先河。
阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。
(6)圆周率的计算方法扩展阅读:
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
7. 圆周率计算公式
圆周率计算公式:
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
圆周率的特性:
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算可观测宇宙的大小,误差还不到一个原子的体积。
以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
8. 圆周率公式
周长C/直径d=3.14159。π=圆周长/直径=102573/32650=3.
9. 圆周率计算公式是什么
π=C/D=C/2R。
其中:C为圆的周长,D为圆的直径,R为圆的半径。
或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形,C/D的值都是一样,这样就定义出常数π。
当正多边形的边长越多时,其周长就越接近于圆的周长。“兀”是由我国古代数学家祖冲之的割圆术求出来的。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专着,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。