1. 高斯数学1十到100的公式
(1+100)×100÷2=5050。
高斯求和
德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100。
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51
1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为:
(1+100)×100÷2=5050。
(1)小高斯的简便计算方法扩展阅读:
高斯的故事:
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债帐目的事情,已经成为一个轶事流传至今。他曾说,他能够在脑袋中进行复杂的计算。
小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。
当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
等差数列公式
等差数列公式an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2
若公差d=1时:Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n均为正整数。和Sn,首相a1,末项an,公差d,项数n。
2. 1加2加3一直加到100于等于多少这种简便算法是数学家什么小时候想出来的
100+1=101 101x50=5050
高斯是德国伟大的数学家.小时候他就是一个爱动脑筋的聪明孩子.
高斯7岁那年开始上学。10岁的时候,一次一位老师想治一治班上的淘气学生,他出了一道数学题,让学生从1+2+3……一直加到100为止.他想这道题足够这帮学生算半天的,他也可能得到半天悠闲.谁知,出乎他的意料,刚刚过了一会儿.小高斯就举起手来,说他算完了.老师一看答案,5050,完全正确.老师惊诧不已.问小高斯是怎么算出来的.
高斯说,他不是从开始加到末尾,而是先把1和100相加,得到101,再把2和99相加,也得101,最后50和51相加,也得101,这样一共有50个101,结果当然就是5050了.聪明的高斯受到了老师的表扬.
约翰·卡尔·弗里德里希·高斯(C.F.Gauss,1777年4月30日-1855年2月23日),男,德国着名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。高斯在历史上影响巨大,可以和阿基米德、牛顿并列。
3. 从1 到100用简便方法怎么算
巧算:
(1+99)+(2+98)+(3+97)+(48+52)+(49+51)共有49个100,还有一个50,一个100,所以和是5050。
或者1+2+3+4+...+100
=(1+100)+(2+99)+(3+98)+...+(49+52)+(50+51) 共有50个括号
=(1+100)*50
=5050
公式:首项加末项乘以项数除以2
在这道题里面首项为1,末项为100,项数是100
所以为 (1+100)*100/2=5050
通常对连续的数进行简便运算时,采取首尾相加的方法,因为连续的数集是一个等差数列,首尾相加可以得到一个相等的数,再计算项数,即公式:为首项加尾项乘以项数除以2。