导航:首页 > 计算方法 > 时间复杂的计算方法

时间复杂的计算方法

发布时间:2024-07-18 06:15:59

1. 如何计算时间复杂度

如何计算时间复杂度

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以 上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解: 语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n )

2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解: 当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).

我 们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:

访问数组中的元素是常数时间操作,或说O(1)操作。一个算法 如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间 。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要 求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如着名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。

2. 如何计算时间复杂度

1、先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

2、举例

for(i=1;i<=n;++i)

{for(j=1;j<=n;++j)

{c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方次

for(k=1;k<=n;++k)

c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方次}}

则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方为T(n)的同数量级

则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c

则该算法的 时间复杂度:T(n)=O(n的三次方)

),线性阶O(n),线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,

k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

关于对其的理解

《数据结构(C语言版)》 ------严蔚敏 吴伟民编着 第15页有句话“整个算法的执行时间与基本操作重复执行的次数成正比。”

基本操作重复执行的次数是问题规模n的某个函数f(n),于是算法的时间量度可以记为:T(n) = O(f(n))

如果按照这么推断,T(n)应该表示的是算法的时间量度,也就是算法执行的时间。

而该页对“语句频度”也有定义:指的是该语句重复执行的次数。

如果是基本操作所在语句重复执行的次数,那么就该是f(n)。

上边的n都表示的问题规模。

3. 镞堕棿澶嶆潅搴︽庝箞绠

镞堕棿澶嶆潅搴﹁$畻鍏寮忓备笅

method1锛堬级{
System.out.println锛堬纾绁濅綘鐪嬩简杩欑瘒鏂囩珷锛傦级锛//镓ц1娆System.out.println锛堬纾璇镐簨椤哄埄锛傦级锛//镓ц1娆System.out.println锛堬纾涓囦簨濡傛剰锛傦级锛//镓ц1娆}//1锛1锛1锛3
method2锛堬级銆

for锛坕nti锛0锛沬锛5锛沬锛嬶纭锛墈//i锛0镓ц1娆★绂i锛5鍒ゆ柇5锛1娆★纴绛変簬5镞跺垽鏂钖庨鍑猴绂i锛嬶纭镓ц5娆System.out.println锛堬纾镣硅禐鍙戣储锛侊纾锛夛绂//镓ц5娆}}//1锛嬶纸5锛1锛夛纭5锛5锛17
method3锛坕ntn锛夈

for锛坕nti锛0锛沬锛渘锛沬锛嬶纭锛墈//i锛0镓ц1娆★绂i锛渘镓ц宯锛1娆★绂i锛嬶纭镓ц宯娆System.out.println锛堬纾镣硅禐濂借繍锛侊纾锛夛绂//镓ц宯娆★纴浣犱细链塶娆″ソ杩愬摝}}//1锛嬶纸n锛1锛夛纭n锛媙锛3n锛2銆


澶O琛ㄧず娉曞备笅锛

涓婇溃镄勬椂闂村嶆潅搴︾殑琛ㄧず杩樻槸杈冨嶆潅锛屾垜浠涓鑸閮戒娇鐢ㄥぇO琛ㄧず娉曟潵绠鍖栬〃绀烘椂闂村嶆潅搴︺

1銆佸嶆潅搴︿负甯告暟锛屽23锛9999锛岀瓑绛夐兘琛ㄧず涓篛锛1锛夈

2銆佸嶆潅搴﹀寘钖玭镞讹纴鐪佺暐绯绘暟涓庡父鏁伴”锛屽彧鍙杗镄勬渶楂橀桩椤广

濡傦细2n锛45涓篛锛坣锛夛绂4n锛3锛6n锛2锛媙涓篛锛坣锛3锛夈

3銆佸嶆潅搴︿负瀵规暟镞讹细濡俵og5锛坣锛夈乴og2锛坣锛夌瓑绛夐兘琛ㄧず涓篛锛坙ogn锛夈

4銆佺渷鐣ヤ绠阒讹纴鍙鍙栭珮阒讹纸鍗冲彇链澶х殑锛夈

濡傦细logn锛媙logn琛ㄧず涓篛锛坣logn锛夈

4. 时间复杂度的计算方法

时间复杂度1. 算法复杂度分为 时间复杂度和空间复杂度。
作用: 时间复杂度是度量算法执行的时间长短;而空间复杂度是度量算法所需存储空间的大小。
2. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
3. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,在找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方 次
}
}
则有 T(n)= n的平方+n的三次方,根据上面空号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n的三次方)
希望能解决您的问题。

5. 时间复杂度的计算

求解算法的时间复杂度的具体步骤是: 1、找出算法中的基本语句:算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 2、计算基本语句的执行次数的数量级:(1)只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。(2)这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。 3、用大Ο记号表示算法的时间性能:(1)将基本语句执行次数的数量级放入大Ο记号中。(2)如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如: for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++) for(j=1;j<=n;j++)x++;(3)第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。这只能基本的计算时间复杂度,具体的运行还会与硬件有关。

阅读全文

与时间复杂的计算方法相关的资料

热点内容
低头颈椎病的症状和治疗方法 浏览:166
住楼房如何冬储大白菜的储存方法 浏览:402
黄金马桶的制作方法视频 浏览:450
夜钓草鱼调漂技巧及方法 浏览:452
450除以45简便方法怎么写 浏览:657
狗肺的功效与作用及食用方法 浏览:225
颅脑增生的症状和治疗方法 浏览:365
老人睡不着觉有什么治的方法吗 浏览:398
联想电脑与显示器的连接方法 浏览:402
小米5s的mac设置在哪里设置方法 浏览:411
led电子屏安装方法 浏览:803
如何找到学习方法 浏览:132
扁蓄食用方法 浏览:817
牛肚如何腌制方法 浏览:990
古典概型的导入方法有哪些 浏览:336
鸡肠道发育的最佳方法 浏览:620
手机音量键在哪里设置方法 浏览:20
101乘以88的简便方法 浏览:458
塑身机使用方法 浏览:684
代购邮费的计算方法 浏览:437