㈠ 阍㈢粨鏋勬圹閲嶈$畻鏂规硶锛
阍㈢粨鏋勬圹閲嶈$畻鏂规硶鍖呮嫭浠ヤ笅鍑犱釜姝ラわ细
涓銆佸弬镦т緷鎹锛
1. 铡熻捐″浘
2. 銆婂缓绛戠粨鏋勮嵎杞借勮寖銆婫B_50009_2001
3. 阍㈢粨鏋勯挗姊佸集镟插簲锷涘己搴﹁$畻镓嫔唽
4. 瀹炵敤鍨嬮挗琛
浜屻佸弬镦у熀链鍊硷细
1. 鎭掕浇鍊硷细0.30KN/銕
2. 闆杞藉硷细0.25 KN/銕
3. 椋庡帇鍊硷细0.25 KN/銕
4. 灞嬮溃闆ㄦ氲嚜閲嶏细0.15 KN/銕
5. 铡熼挗姊乄Z鍊硷细WZ=274C銕
6. 璋冩暣钖庨挗姊乄Z鍊硷细WZ=265C銕
7. 姊佸集镟茶哥敤搴斿姏鍊硷细銆惷炽=6.2MPa
涓夈佸弬镦у叕寮忥细
1. 琚鏁版倝锛庢姉寮鎴闱㈡ā閲忥细WZ=d*(h骞虫柟)/6
2. 阍㈡佸集镟插簲锷涘己搴: 贸max=(Mmax)/ (WZ)铌ゃ惷炽
3. 姊佷腑链澶у集鐭╋细Mmax=锛1/16锛*p*L
4. 阍㈡佸弹锷涘姏镣癸细P
5. 姊佷袱绔鏀镣逛箣闂撮暱搴︼细L
锲涖佸师阍㈡佸集镟插簲锷涘己搴︽牎镙革细
1. 阍㈡佹圹鍙楁昏嵎杞藉硷细𨰾崭箮闱㈢Н*鍙傛暟鍊=6*6.8*0.95=38.76kN
2. P=38.76/16=2.4225KN
3. Mmax=锛1/16锛*p*L Mmax= (1/16)*2.4225*6.8=1.02956kN.m
4. 贸max=(Mmax)/ (WZ)铌ゃ惷炽 贸max=(1.02956*10镄3娆℃柟)/(274*10镄勮礋6娆℃柟)=3.795mpa铌ゃ惷炽
浜斻佽皟鏁村悗阍㈡佸集镟插簲锷涘己搴︽牎镙革细
1. 阍㈡佹圹鍙楁昏嵎杞藉硷细闱㈢Н*鍙傛暟鍊=6*6.8*0.95=38.76kN
2. P=38.76/16=2.4225KN
3. Mmax=锛1/16锛*p*L Mmax= (1/16)*2.4225*6.8=1.02956kN.m
4. 贸max=(Mmax)/ (WZ)铌ゃ惷炽 贸max=(1.02956*10镄3娆℃柟)/(265*10镄勮礋6娆℃柟)=3.92438mpa铌ゃ惷炽
一般指的是抗侧力计算,比如抗震,主要方法有剪力分配法、振型分解反应谱法、时程分析法。
剪力分配法
( non-shear distribution method) 由着名力学家,中国科学院院士钱令希于1951年出版的《超静定结构学》中,根据结构力学中的弯矩分配法提出的调整分配法,后来被人称为“无剪力分配法”。
剪力分配法的基本概念
(1)剪力分配法的思路:用剪力分配系数将结点外荷载按一定的比例分配给各杆端,先得到柱端剪力,再求柱端弯矩。
(2)剪力分配法的条件:具有无限刚性横梁的刚架或排架在水平结点荷载作用下的计算。
(3)抗剪刚度D:当杆端发生相对侧移Δ=1时,柱顶产生的剪力。两端固定的等截面柱: 一端固定一端铰支的等截面柱:
(4)抗剪分配系数γ:(5)柱顶剪力Qi:
剪力分配法的计算步骤
(a)计算剪力分配系数;(b)计算分配剪力;(c)将分配剪力作用于反弯点,求杆端弯矩。
振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。
㈢ 结构计算的结构计算方式
1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。
(1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9.具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。
(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。
(3)结构基本周期是计算风荷载的重要指标。设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。
上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。 2.确定整体结构的合理性整体结构的科学性和合理性是新规范特别强调内容。新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。
(1)周期比是控制结构扭转效应的重要指标。它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。也就是说,周期比不是要求就构足够结实,而是要求结构承载布局合理。《高规》第4.3.5条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比的要求给出了规定。如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员需要增加结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。
设计软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转(平动)周期。以下介绍实用周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的平动周期,按周期值从大到小排列。同理,将所有平动系数大于0.5的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动周期即可。
(2)位移比(层间位移比)是控制结构平面不规则性的重要指标。其限值在《建筑抗震设计规范》和《高规》中均有明确的规定,不再赘述。需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的,如果在结构模型中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。
㈣ 寤虹瓒缁撴瀯钻疯浇璁$畻镄勬柟娉
1 绾胯嵎杞芥槸闱㈣嵎杞戒箻浠ラ暱搴﹂溃钻疯浇鏄瀹归吨涔树互铡氩害镣硅嵎杞藉簲璇ユ槸闆嗕腑钻疯浇锛屾槸绾胯嵎杞戒箻浠ヤ綔鐢ㄧ殑闀垮害銆
鍙浠ユ寜浠ヤ笅鏂瑰纺鐞呜В锛
瀹归吨鏄鎸夌珛鏂硅$畻锛屾瘆濡傚崟浣嶆槸kN/m3锛屼箻浠ュ帤搴︽垨闀垮害锛埚崟浣岖背锛夛纴绾︽帀鍒嗘瘝涓镄勪竴涓猰鍙樻垚kN/m2杩欐槸闱㈣嵎杞斤绂鍐崭箻浠ラ溃钻疯浇浣灭敤镄勯暱搴︼纴绾︽帀鍒嗘瘝涓镄勪竴涓猰鍙樻垚kN/m杩欐槸绾胯嵎杞斤绂鍐崭箻浠ョ嚎钻疯浇浣灭敤镄勯暱搴︼纴绾︽帀鍒嗘瘝涓镄勪竴涓猰鍙樻垚kN杩欐槸闆嗕腑钻疯浇銆
2 渚嫔傜粨鏋勮嚜韬镄勮嚜閲嶏纴椋庡姏浣灭敤涓嬬殑椋庤嵎杞斤纴灞嬮溃绉闆阃犳垚镄勯洩钻疯浇锛屾ゼ𨱒夸笂鎽嗘斁瀹跺叿銆佷汉锻樻椿锷ㄩ犳垚镄勬椿钻疯浇锛屽湴闇囦綔鐢ㄤ笅镄勫湴闇囱嵎銆
锛1) 鎸夌収钻疯浇镄勬椂闂寸壒镐у彲浠ュ垎涓猴细
姘镐箙钻疯浇锛堟垨钥呭彨鎭掕嵎杞斤级锛屽彲鍙樿嵎杞斤纸鎴栬呭彨娲昏嵎杞斤级銆佸伓铹惰嵎杞姐傛寜镦ц嵎杞界殑缁撴瀯鍙嶅簲绫诲瀷鍙浠ュ垎涓猴细闱栾嵎杞斤纸濡傜粨鏋勮嚜閲嶏级銆佸姩钻疯浇锛埚傚湴闇囦綔鐢锛夋寜镦ц嵎杞界殑鍒嗗竷褰㈠纺鍙浠ュ垎涓猴细鍧囧竷钻疯浇锛埚傛ゼ闱㈤摵璐寸殑澶х悊鐭冲湴𨱒匡级銆佺嚎钻疯浇锛埚傚欎綋锛夈侀泦涓钻疯浇锛埚傛満鍣ㄨ惧囩殑鏀鎾戠偣锛夈
(2) 鎸夎嵎杞戒綔鐢ㄧ殑鏂瑰悜鍙鍒嗕负锛
鍨傜洿钻疯浇鍜屾按骞宠嵎杞藉缓绛戠粨鏋勮嵎杞借$畻锛屽氨鏄镙规嵁寤虹瓒缁撴瀯镄勫疄闄呭弹锷涙儏鍐佃$畻涓婅堪钖勭崭綔鐢ㄥ姏镄勫ぇ灏忋佹柟钖戙佷綔鐢ㄧ被鍨嬨佷綔鐢ㄦ椂闂寸瓑绛夛纴浣滀负缁撴瀯鍒嗘瀽鍜岃$畻镄勪富瑕佷緷鎹涔嬩竴銆傚彧链夊嗳纭璁$畻鍑虹粨鏋勮嵎杞斤纴镓嶈兘璁捐″嚭钖堢悊镄勭粨鏋勫舰寮忓拰鏋勪欢灏哄革纴杈惧埌镞㈠畨鍏ㄥ张缁忔祹镄勭洰镄勚
寤虹瓒绉伴吨涓鸿兘锷涚殑涓涓琛¢噺鐗╃悊閲忋
钻疯浇镄勫垎绫
(涓)鎸夐殢镞堕棿镄勫彉寮傚垎绫
1锛庢案涔呬綔鐢(姘镐箙钻疯浇鎴栨亽杞)锛氩湪璁捐″熀鍑嗘湡鍐咃纴鍏跺间笉闅忔椂闂村彉鍖栵绂鎴栧叾鍙桦寲鍙浠ュ拷鐣ヤ笉璁°傚傜粨鏋勮嚜閲嶃佸湡铡嫔姏銆侀勫姞搴斿姏銆佹贩鍑濆湡鏀剁缉銆佸熀纭娌夐檷銆佺剨鎺ュ彉褰㈢瓑銆
2锛庡彲鍙树綔鐢(鍙鍙樿嵎杞芥垨娲昏嵎杞)锛氩湪璁捐″熀鍑嗘湡鍐咃纴鍏跺奸殢镞堕棿鍙桦寲銆傚傚畨瑁呰嵎杞姐佸眿闱涓庢ゼ闱㈡椿钻疯浇銆侀洩钻疯浇銆侀庤嵎杞姐佸悐杞﹁嵎杞姐佺Н𨱔拌嵎杞界瓑銆
3锛庡伓铹朵綔鐢(锅剁劧钻疯浇銆佺壒娈婅嵎杞)锛氩湪璁捐″熀鍑嗘湡鍐呭彲鑳藉嚭鐜帮纴涔熷彲鑳戒笉鍑虹幇锛岃屼竴镞﹀嚭鐜板叾鍊煎緢澶э纴涓旀寔缁镞堕棿杈幂煭銆备緥濡傜垎镣稿姏銆佹挒鍑诲姏銆侀洩宕┿佷弗閲嶈厫铓銆佸湴闇囥佸彴椋庣瓑銆
(浜)鎸夌粨鏋勭殑鍙嶅簲鍒嗙被
1锛庨润镐佷綔鐢ㄦ垨闱椤姏浣灭敤锛氢笉浣跨粨鏋勬垨缁撴瀯鏋勪欢浜х敓锷犻熷害鎴栨墍浜х敓镄勫姞阃熷害鍙浠ュ拷鐣ヤ笉璁★纴濡傜粨鏋勮嚜閲嶃佷綇瀹呬笌锷炲叕妤肩殑妤奸溃娲昏嵎杞姐侀洩钻疯浇绛夈
2锛庡姩镐佷綔鐢ㄦ垨锷ㄥ姏浣灭敤锛氢娇缁撴瀯鎴栫粨鏋勬瀯浠朵骇鐢熶笉鍙蹇界暐镄勫姞阃熷害锛屼緥濡傚湴闇囦綔鐢ㄣ佸悐杞﹁惧囨尟锷ㄣ侀珮绌哄潬鐗╁啿鍑讳綔鐢ㄧ瓑銆
(涓)鎸夎嵎杞戒綔鐢ㄩ溃澶у皬鍒嗙被
l锛庡潎甯冮溃钻疯浇Q
寤虹瓒鐗╂ゼ闱㈡垨澧欓溃涓婂垎甯幂殑钻疯浇锛屽傞摵璁剧殑链ㄥ湴𨱒裤佸湴镰栥佽姳宀楃煶銆佸ぇ鐞嗙煶闱㈠眰绛夐吨閲忓紩璧风殑钻疯浇銆
2锛庣嚎钻疯浇
寤虹瓒鐗╁师链夌殑妤奸溃鎴栧眰闱涓婄殑钖勭嶉溃钻疯浇浼犲埌姊佷笂鎴栨浔褰㈠熀纭涓婃椂鍙绠鍖栦负鍗曚綅闀垮害涓婄殑鍒嗗竷钻疯浇绉颁负绾胯嵎杞绒銆
3锛庨泦涓钻疯浇
褰揿湪寤虹瓒鐗╁师链夌殑妤奸溃鎴栧眿闱㈡圹鍙椾竴瀹氶吨閲忕殑镆卞瓙锛屾斁缃鎴栨偓鎸傝缉閲岖墿鍝(濡傛礂琛f満銆佸啺绠便佺┖璋冩満銆佸悐𨱔绛)镞讹纴鍏朵綔鐢ㄩ溃绉寰埚皬锛屽彲绠鍖栦负浣灭敤浜庢煇涓镣圭殑闆嗕腑钻疯浇銆
(锲)鎸夎嵎杞戒綔鐢ㄦ柟钖戝垎绫
1锛庡瀭鐩磋嵎杞斤细濡傜粨鏋勮嚜閲嶃侀洩钻疯浇绛夛绂
2锛庢按骞宠嵎杞斤细濡傞庤嵎杞姐佹按骞冲湴闇囦綔鐢ㄧ瓑銆
寤虹瓒钻疯浇锏惧害锏剧
㈤ 建筑结构计算的方法有那几种
笼统地说,就是材料力学+结构力学+弹性力学里包含的所有方法。
你要包含全部结构,也只能这样回答了。
㈥ 妗嗘灦缁撴瀯镄勫唴锷涜$畻鏂规硶鏄浠涔
妗嗘灦缁撴瀯鍦ㄧ珫钖戣嵎杞戒綔鐢ㄤ笅镄勫唴锷涜$畻鍙杩戜技鍦伴噰鐢ㄥ垎灞傛硶銆
鍦ㄨ繘琛岀珫钖戣嵎杞戒綔鐢ㄤ笅镄勫唴锷涘垎鏋愭椂锛屽彲锅囧畾锛氾纸1锛変綔鐢ㄥ湪镆愪竴灞傛嗘灦姊佷笂镄勭珫钖戣嵎杞藉瑰叾浠栨ゼ灞傜殑妗嗘灦姊佺殑褰卞搷涓嶈★纴钥屼粎鍦ㄦ湰妤煎眰镄勬嗘灦姊佷互鍙娄笌链灞傛嗘灦姊佺浉杩炵殑妗嗘灦镆变骇鐢熷集鐭╁拰鍓锷涖傦纸2锛夊湪绔栧悜钻疯浇浣灭敤涓嬶纴涓嶈冭槛妗嗘灦镄勪晶绉汇
璁$畻杩囩▼鍙濡备笅锛
锛1锛夊垎灞傦细鍒嗗眰妗嗘灦镆卞瓙镄勪笂涓嬬鍧囧亣瀹氢负锲哄畾绔鏀镓匡纴
锛2锛夎$畻钖勪釜镫绔嫔垰鏋跺崟鍏冿细鐢ㄥ集鐭╁垎閰嶆硶鎴栬凯浠f硶杩涜岃$畻钖勪釜镫绔嫔垰鏋跺崟鍏冦伞傝屽垎灞傝$畻镓寰楃殑钖勫眰姊佺殑鍐呭姏锛屽嵆涓哄师妗嗘灦缁撴瀯涓鐩稿簲灞傛$殑姊佺殑鍐呭姏銆
锛3锛夊彔锷狅细鍦ㄦ眰寰楀悇镫绔嫔垰鏋朵腑镄勭粨鏋勫唴锷涗互钖庯纴鍒椤彲灏嗙浉闾讳袱涓镫绔嫔垰鏋朵腑钖屽眰钖屾煴鍙风殑镆卞唴锷涘彔锷狅纴浣滀负铡熸嗘灦缁撴瀯涓镆辩殑鍐呭姏銆
鍙犲姞钖庝负铡熸嗘灦镄勮繎浼煎集璺濆浘锛岀敱浜庢嗘灦镆辫妭镣瑰勭殑寮鐭╀负镆变笂涓嬩袱灞备箣鍜屽洜姝ゅ彔锷犲悗镄勫集璺濆浘锛屽湪妗嗘灦鑺傜偣澶勫父甯镐笉骞宠銆傝繖鏄鐢变簬鍒嗗眰璁$畻鍗曞厓涓庡疄闄呯粨鏋勪笉绗︽墍甯︽潵镄勮宸銆傝嫢娆叉彁楂樼簿搴︼纴鍙瀵硅妭镣癸纴鐗瑰埆鏄杈硅妭镣逛笉骞宠寮鐭╁啀浣滀竴娆″垎閰嶏纴浜堜互淇姝c
㈦ 超定静结构计算的基本方法有哪些
计算超静定结构的基本方法是力法和位移法。这两种基本方法的解题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算问题。转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要解决的关键问题就是求解基本未知量。
力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。
位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算,所以学习和掌握位移法是非常有必要的。