Ⅰ 内角和计算公式是什么
内角的和公式:(n-2)×180°(n大于等于3且n为整数),则多边形各内角度数为:(n - 2)×180°÷n。
多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。
n边形内角和为(n-2)*180度。
证明:在n边形内任取一点,连结该点与各个顶点,把n边形分成n个三角形。
因为n个三角形的内角的和等于n·180°,以红圈圈住的点为公共顶点的n个角的和是圆周角360°。
所以n边形的内角和是n·180°-2×180°=(n-2)·180°。(n为边数)。
即n边形的内角和等于(n-2)×180°。(n为边数)。
Ⅱ 三角形的内角和怎么算
三角形的内角和,即三个内角的和。三角形内角和定理:三角形三个内角和等于180°。用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°。也可以用全称命题表示为:∀△ABC,∠1+∠2+∠3=180°。
多边形内角和
三角形:180°=180°·(3-2),
四边形:360°=180°·(4-2),
五边形:540°=180°·(5-2),
…,
n边形:180°·(n-2),…。
内角和公式
任意n边形内角和公式
任意n边形的内角和公式为θ=180°·(n-2)。其中,θ是n边形内角和,n是该多边形的边数。从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°,故,任意n边形内角和的公式是:θ=(n-2)·180°,∀n=3,4,5,…。
相关推论
推论1:直角三角形的两个锐角互余。
推论2:三角形的一个外角等于和它不相邻的两个内角和。
推论3:三角形的一个外角大于任何一个和它不相邻的内角。
三角形的内角和是外角和的一半。三角形内角和等于三内角之和。