❶ 三重积分的计算方法及经典例题
三重积分的计算方法:
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成
②函数条件:f(x,y)仅为一个变量的函数。
示例:
设Ω为空间有界闭区域,f(x,y,z)在Ω上连续
(1)如果Ω关于xOy(或xOz或yOz)对称,且f(x,y,z)关于z(或y或x)为奇函数,则:
(2)如果Ω关于xOy(或xOz或yOz)对称,Ω1为Ω在相应的坐标面某一侧部分,且f(x,y,z)关于z(或y或x)为偶函数,则:
(3)如果Ω与Ω’关于平面y=x对称,则:
(1)重积分的计算方法论文常问问题扩展阅读
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ);
作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
❷ 重积分怎么算
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域 ,并以 表示第 个子域的面积。在 上任取一点 作和 。如果当各个子域的直径中的最大值 趋于零时,此和式的极限存在,且该极限值与区域D的分法及 的取法无关,则称此极限为函数 在区域 上的二重积分,记为 ,即 。这时,称 在 上可积,其中 称被积函数, 称为被积表达式, 称为面积元素, 称为积分区域, 称为二重积分号。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。