Ⅰ 找规律题的方法
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是
100 ,第n个数是 n
。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:
1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是
-1,第100项是 —1
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
例如:1,9,25,49,(81),(121),的第n项为(
),
1,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
(三)看例题:
A:
2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18
答案与3有关且是n的3次幂,即:
n +1
B:2、4、8、16.......增幅是2、4、8..
.....答案与2的乘方有关即:
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n个数为
。再看原数列是同时减2得到的新数列,则在
的基础上加2,得到原数列第n项
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 :
4,16,36,64,?,144,196,…
?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n项即n
,原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即,4
n ,则求出第一百个数为4*100 =40000
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
Ⅱ 规律如何找
规律是什么?上学时候经常会遇到找规律的数学题,小学时候有简单的找数字规律的题(简单的数列),到了高中有数列这种找规律 列数列公式的题,数列就是找规律题的代表,数列可以用统一的公式去描述,那么规律可以理解成可以统一描述相似过程的模型。
理科中发现的规律叫做公式,实际的生产中的规律用模型来描述。做一件事情比如包饺子,要包100个饺子,整个过程中有哪些重复的相似子过程呢?当然这里包一个饺子的过程就是重复n遍的子过程了,将这个子过程叫做单位过程,包完100个饺子=包1个饺子*100,那么我们只要掌握了包一个饺子的过程加以100次重复即可完成任务,这个单位过程是如此重要,单位过程即是模型过程,整体过程再大也最终会化成单位过程*n。上述的单位过程构成整体的方法在编程中使用for循环实现的,是啊,任何很复杂的过程都是可以用编程中的if for 去描述出来的,for循环实现了无限变有限,无限的整体也无非是由相似的单位个体构成的,我只要知道你的边界以及单位模型即可描述出你的整体构造过程。由此可见,单位模型是如此的重要,单位模型是重复的相似子过程,找规律其实就是在找单位模型,下面举例说明如何去找单位模型。