导航:首页 > 计算方法 > 初中小学计算方法

初中小学计算方法

发布时间:2023-10-24 20:44:47

‘壹’ 中学数学的计算技巧

怎样提高中学生的计算能力?在我看来,这要得意识到计算他不是一个简单的求值过程。下面是我为大家整理的关于中学数学的计算技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1中学数学的计算技巧

加强简便的运算训练,提高运算的整体把握能力,要充分运用已学过的运算定律、性质、合理改变运算顺序,使运算尽可能简便、正确。教给学生一些巧算技巧。可以这样说,把握好这一点,是提高运算速度的最有效途径,因此,这一点很关键,教师在授课时必须进行适当的传授,把一些常用有效的技巧教给学生。

扩展数学视野,形成良好数感,学生应该具有对于数及其运算的敏捷感知与深入认识,这种素质称为数感; 类似地,对数学符号的感知和理解称为符号感.良好的数感和符号感是计算能力的基础,它们有助于学生分析问题情景,形成数学的直觉,有助于对运算结果进行估算,探讨显示在计算器或计算机上的运算结果的合理性.良好的数感和符号感有助于建立猜想,检查猜想的合理性.

帮助学生发展数感和符号感是发展学生计算能力的有效途径.初中 毕业 生应该理解基本运算,能够熟练的进行整数小数和分数的运算.而高中生更应该清楚地理解数系的概念,了解不同数系之间的联系与区别,探讨一个数系的性质在另一个数系中是否仍然成立随着符号感的发展,学生能够发现有关数的一般性质.在美国,高中生还要学习与运用向量和矩阵,概率与统计.宽广的数学视野能够开拓学生解决问题的思路,从而发展学生的计算能力。

2中学数学计算的能力的培养

增强简算意识,提高计算的灵活性

简算是依据算式、数据的不同特点,利用运算定律、性质及数与数之间的特殊关系,使计算的过程简化、简洁的计算 方法 。简算是培养学生细心观察、认真分析、善于发现事物规律,训练学生思维深刻性、敏锐性、灵活性,提高计算效率,发展计算能力的重要手段。在小学数学里,加法交换律、结合律,乘法交换律、结合律与分配律,是学生进行简算的主要依据。

因此,在数学教学中我特别注意帮助学生深刻理解与熟练掌握这五条运算定律,及一些常用的简便计算方法,并经常组织学生进行不同形式的简算练习,让学生在计算实践中体验简算的意义、作用与必要性,强化学生自觉运用简算方法的意识,提高学生计算的灵活性和正确率。

培养学生的估算能力,强化估算意识

估算意识是指当主体面临有待解决的问题时,能主动尝试着从数学的角度运用数学的思想方法寻求解决问题的策略,懂得什么情况宜于估计而不比作准确的计算,并以正确的算理为基础,通过迅速合理的观察和思考,从众多信息中间寻求一批有用的或关键的数学信息,从而得到尽可能接近理想状态的结果。在数学教学中渗透和强化估算意识,可以进一步增强学生的学习兴趣,激活学生的思维,开阔学生的思路,提高学生综合运用多中方法处理、解决实际问题能力。

培养学生的估算意识我主要从两个方面入手。一方面,我在教学过程有意识地渗透估算思想,让学生用估算对数学规律进行猜想,用估算法检验解题思路,用估算法检验解题结果等,将估算思想贯穿教学始终,使学生在潜移默化中强化估算的意识。另一方面,让学生尽可能地运用估算解决一些与生活密切相连的问题,根据生活中的实际情况进行估算。如:装油问题(一个油桶装5千克油,有22千克油,需要几个油桶?)。通过这样的估算训练,让学生们在心理体验中感受这一知识的实际应用价值,从而主动探索估算方法,增强学生们的估算意识。

3中学数学计算能力的培养

夯实基础,强化基础知识掌握和口算训练

计算题的解答首先须考虑的是如何运用数学概念、运算法则或公式等,能否理解与掌握这些基础知识直接影响到学生计算能力的高低。如四则混合运算,就应当理解四则混合运算的法则,学生就应当了解到先乘除后加减,先计算括号的运算等相关基础知识,才能确保计算不出现差错。相对于低年级同学,高年级基础知识就更加丰富了,计算教学更应当注意不可急于求成,要从已学的基础知识整理出发,进行迁移训练。在教授异分母分数加法时,就应当从加法、分数单位意义出发。引导学生思考:分数单位不同,是否可以直接相加?进而指导学生运用通分知识、化异为同,将问题转化为已学习的同分母分数加法。

口算训练也大致如此。口算作为计算能力的基础,是仅依靠思维计算,快速得出计算结果的数学技能。口算在日常生活学习中有着广泛的应用范畴,对于学生 记忆力 、注意力及思维能力的培养均有直接作用。因此,在小学低年级学生的口算能力培养,尤其应坚持“重在平时,贵在坚持”的教学原则。如20以内的加减法、九九乘法表等都应达到脱口而出的程度,对于对于学生口算方法的长期熟悉和巩固,教师要适时地推动学生计算方法方面的熟练程度转化为为基本数学技能,增强计算教学的实效性。

自主探索,应在教师主导下经历算法探索过程

紧扣新旧知识间的内在关联,刺激正迁移的形成。将学生的思维有效地引到新旧知识的联结点上,可是学生更快地掌握新知识点,进入算理理解的新层次。如两位数相加的进位加法算术中,教师就可通过17+18=?12+9=?之类的例题,引导学生比较两位数相加与两位数加一位数之间的算法联系,即相同数位上数的加减,满十进一。当学生把握后新旧知识关联后,教师还应在掌控课堂的前提下,在对比分析两者联系后,引导学生认清本质,避免负迁移的发生。简单的如大数的口算,700+500=900,学生可根据已有知识 经验 得出7+5=12。这时教师就应强调7代表的数学内涵――7个百,这些问题在高年级学生看起来似乎很幼稚,但对于数学基础技能的培养却是不容忽视的。

算法交流。保证算法交流的实效性,关键在于使学生学会倾听、质疑、体验、比较与评价。具体教学中,教师应把握好互动教学中对话的“度”与其中蕴含的反馈信息,避免出现挤占课时的情况。我们可考虑从以下几句话着手: 如“你是怎么想的?”在鼓励学生展示个性化的算法时,教师还应就学生算法中所反映的思维水平,适度地调整教学进度与重难点教学设计。“大家对于现在所学的计算法则有什么 总结 吗?”教师要允许学生出现概括错误情况的出现,通过师生共同的补充、归纳,得出正确的计算法则,并在巩固练习使学生得到更深入地理解。如1000-234,教师就可在学生们的踊跃回答后,总结出一般规律:连续退位减法带0时,0点上退位点变为9,其他数字点相应减1。其中的关键点就在于学生对于算法规律的普遍掌握。

4数学计算能力的培养

突出重点。

如万以内的加减法,练习的重点是进位和退位。要牢记加进位数和减退位数,难点是连续进 位和退位;两三位数的乘法要练习第二、第三部分积的对位;小数的计算则注意小数点位置的处理,加、减、 除法强调小数点对齐,注意用"0"占位;简便运算则重点练习运用定律、性质和凑整。因此,在组织训练时必须 明确为什么练,练什么,要求达到什么程度,只有这样才能收到事半功倍的效果。

打好基础。

“要重视基本的口算训练。”口算既是笔算、估算和简算的基础,也是计算 能力的重要组成部分。因此要求学生在理解的基础上掌握口算方法,根据各年级对计算的要求,围绕重点,组 织一系列的有效训练,持之以恒,逐步达到熟练。凑整的训练一定要加强,如:74+26=100,63+37=100,252+ 748=1000,25×4=100,125×8=1000等,要教给学生迅速观察,判断、凑整的能力。这些要求到了中、高年级 也不应忽略。

同时要加强乘、加的口算训练,如两位数乘三位数176×47,当用7去乘被乘数 的十位时,还要加上6×7进上来的"4",所以"7×7+4"这类的口算必须在教学之前加以训练。除数是两位数,商 是二、三位数的除法,试商是难点,如果两位数乘以一位数的口算不过关,试商就困难。估算能力不强,试商也直接受到影响。到了高年级一些常用的口算,10-5.4= 4÷20= 3.5×200= 1.5-0.06= 0.75÷15= 0.4×0.8= 4×0.25= 0.36+1.54= 这些也要作为基本口算常抓不懈。3.掌握简便运算的方法。这是一种特殊形式的口算。简算的基础是运算性质和运算定律,因此,加强这方 面的训练是很重要的。在小学四则运算中,几种常用的简算方法学生必须掌握,从而达到提高计算速度的要求 。4.训练要有层次,由浅入深,由简单到复杂。训练形式要多样化,游戏、竞赛等更能激发学生训练的热情 ,维持训练的持久性,收到良好的效果。


中学数学的计算技巧相关 文章 :

1. 初中数学速算技巧

2. 初中数学成绩提升四大技巧及公式

3. 初中数学的解题技巧

4. 高中数学速算技巧

5. 数学十大速算技巧

6. 中学数学学习技巧总结

7. 初中数学学习的一般误区,数学学习十大技巧

8. 初中数学学习方法总结,数学的六大方法技巧!

9. 初中数学的五个学习方法

10. 初二学生数学学习中的计算训练方法

‘贰’ 跪求小学到初中阶段数学的公式等解题方法!!!

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、总数÷总份数=平均数
3、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
4、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
5、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
6、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
7、、 加数+加数=和 和-一个加数=另一个加数
8、 被减数-减数=差 被减数-差=减数 差+减数=被减数
9、 因数×因数=积 积÷一个因数=另一个因数
10、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式:
1 、正方形:C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体: V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 、长方形: C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 、长方体:V体积s面积 a长 b 宽 h高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)×2
(2)体积=长×宽×高 V=abh
5、三角形: s面积a底h高 面积=底×高÷2 s=ah÷2
三角形高=面积×2÷底 三角形底=面积 ×2÷高
6、平行四边形: s面积 a底 h高 面积=底×高 s=ah
7、梯形:s面积a上底b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形:S面积C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
和差问题的公式:
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题:
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题:
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题:
一、 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1 全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1)
株距=全长÷(株数+1)
二、 封闭线路上的植树问题的数量关系如下:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
三、盈亏问题:
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
四、相遇问题:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
追及问题:
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题:
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
长度单位换算:
1千米=1000米1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米
面积单位换算:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
重量单位换算:
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算:
1元=10角 1角=10分 1元=100分
时间单位换算:
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天,闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh

阅读全文

与初中小学计算方法相关的资料

热点内容
导航连接车载的方法 浏览:385
重复接地最佳方法 浏览:282
女性快乐器使用方法 浏览:294
研究媒介文化的方法 浏览:962
矩法度量常用的方法 浏览:221
小米六飞行模式在哪里设置方法 浏览:114
如何在学校减肥的最好方法 浏览:88
电动车转把三速正确接线方法 浏览:814
快速减肥用什么方法 浏览:475
电子表格如何快速居中靠左方法 浏览:924
老人发烧如何退烧最有效的方法 浏览:668
倩碧晚霜使用方法 浏览:218
数学课的力量训练方法 浏览:370
酒枣如何腌制方法 浏览:572
车衣使用方法视频 浏览:437
什么能止痒最快方法 浏览:487
别克英朗防雨条的安装方法 浏览:247
企业会计制度设计常用的方法 浏览:214
苏泊尔净水器使用方法 浏览:467
示波器电流探头测量方法 浏览:347