① 数学概率计算方法
概率=符合条件的数目/总数目
概率,又称或然率、机会率或机率、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生的可能性的度量。
概率的公式很多,不知道你要哪个方面的:
1.P(Φ)=0. 性质2(有限可加性).当n个事件A1,…,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An). _ 性质3.对于任意一个事件A:P(A)=1-P(非A). 性质4.当事件A,B满足A包含于B时:P(BnA)=P(B)-P(A),P(A)≤P(B). 性质5.对于任意一个事件A,P(A)≤1. 性质6.对任意两个事件A和B,P(B-A)=P(B)-P(AB). 性质7(加法公式).对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B). (注:A后的数字1,2,...,n都表示下标.)
② 求概率计算公式
古典概型:
(1)算出所有基本事件的个数n;
(2)求出事件A包含的所有基本事件数m;
(3)代入公式P(A)=m/n,求出P(A)。
几何概型:
设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(
掷点),称为几何概型。关于几何概型的随机事件“ 向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即
P=g的测度/G的测度
几何概型求事件A的概率公式:
一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率为:
P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)
这里要指出:D的测度不能为0,其中“测度”的意义依D确定.当D分别为线段,平面图形,立体图形时,相应的“测度”分别为长度,面积,体积等.
③ 概率的计算公式
12粒围棋子从中任取3粒的总数是C(12,3)
取到3粒的都是白子的情况是C(8,3)
C(8,3)
P=——————=14/55
C(12,3)
排列:从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。
排列数:从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Anm
排列公式:A(n,m)=n*(n-1)*.....(n-m+1)
组合:从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。
组合数:从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm。
组合公式:C(n,m)=A(n,m)/m!=n!/(m!*(n-m)!)
拓展资料:
概率的计算,是根据实际的条件来决定的,没有一个统一的万能公式。解决概率问题的关键,在于对具体问题的分析。然后,再考虑使用适宜的公式。
有一个公式是常用到的:P(A)=m/n。“(A)”表示事件。“m”表示事件(A)发生的总数。“n”是总事件发生的总数。
④ 概率如何计算
定义事件和结果。概率是在一系列可能结果中一个或多个事件发生的可能性。因此,假设我们希望计算出把一个六面骰子掷出三的可能性。"掷出三"是一个事件,而我们知道六面骰子可以被掷出六个数字中的任何一个,因此其结果数为六。以下为另外两个例子能加深你的理解:
例1:随机选择一个星期中的一天,选出的一天是周末的可能性有多大?
"选出周末中的一天"是我们的事件,而结果数就是一个星期中的天数,即七。
例2:一个罐子中装有4个蓝色小石、5个红色小石和11个白色小石。如果随机从罐子中取出一块小石,这块小石是红色的可能性有多大?
"选出红色小石"是我们的事件,结果数是罐子中小石的总数,即20。
2
用事件数除以可能结果数。所得结果即为单一事件发生的概率。在掷骰子中掷出三的例子中,事件数为一(每一骰子中只有一个三),而结果数为六。则其概率为1 ÷ 6、1/6、.166或16.6%。以下为计算其他例子中的概率的方法:
例1:随机选择一个星期中的一天,选出的一天是周末的可能性有多大?
事件数为二(因为一个星期中有两天为周末),而结果数为七。则其概率为2 ÷ 7 = 2/7即.285或28.5%。
例2:一个罐子中装有4个蓝色小石、5个红色小石和11个白色小石。如果随机从罐子中取出一块小石,这块小石是红色的可能性有多大?
事件数为五(因为共有五块小石),而结果数为20。则其概率为5 ÷ 20 = 1/4即.25或25%。
⑤ 数学概率C怎么计算
排列(有顺序):mAn=m*(m-1)*.....*(m-n+1)
组合(无顺序):mCn=m*(m-1)*.....*(m-n+1)/(1*2*...*n)
等可能事件:P(A)=m/n
互斥事件:P(A+B)=P(A)+P(B)
P(A·B)=0
独立事件:P(A·B)=P(A)·P(B)
公式:C(m/n)[m在上n在下]=n×(n—1)…(n—m+1)/m
拓展资料
概率统计是研究自然界中随机现象统计规律的数学方法,叫做概率统计,又称数理统计方法。概率统计主要研究对象为随机事件、随机变量以及随机过程。
概率统计是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。
参考资料:网络-概率统计
⑥ 概率的算数计算方法
概率的算数计算方法:
柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:
设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:
(1)非负性:对于每一个事件A,有P(A)≥0;
(2)规范性:对于必然事件Ω,有P(Ω)=1;
(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……
概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生,其是客观论证,而非主观验证。如某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这些都是概率的实例。
⑦ 如何用EXCEL计算数字概率
一、FACT函数求组合
FACT函数是求组合的函数
例1、1至9中组成不包含重复数的9位数,有几种组合方式呢,可以用下列公式 =FACT(9)。
⑧ 概率怎么计算
1、C 3 10 = (10*9*8)/(1*2*3)
A 3 10=10*9*8
2、A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每个数连乘。
C(n,m)=A(n,m)/A(m,m)。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。
(8)数字概率计算方法扩展阅读:
概率的加法法则
定理:设A、B是互不相容事件(AB=φ),则:
P(A∪B)=P(A)+P(B)
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1
推论3:为事件A的对立事件。
推论4:若B包含A,则P(B-A)= P(B)-P(A)
推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)[1]
条件概率
条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)
条件概率计算公式:
当P(A)>0,P(B|A)=P(AB)/P(A)
当P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推广:P(ABC)=P(A)P(B|A)P(C|AB)[1]
⑨ 概率计算方法如下题
复述一遍题意:三组数,每组(1,2,3,4,5,6),每次同时从三组数中每组抽一个数组成一组:(a1,a2,a3),问第5组抽取的数的概率?
第5组抽取什么数的概率?
如果前四次结果给了,求第5组抽取某个确定数组的概率,那应该是独立事件,跟前四组数没关系;否则是条件概率
⑩ 如何用EXCEL计算数字概率
1、下图是举例的统计数据。对于每天登录网络产品的次数,输入相应的数量并开始处理。