① 用matlab求解数值计算问题,matlab中已有各种数值计
用matlab求解数值计算问题方法:
1、使用MATLAB中提供的ode45,ode23等函数,将微分方程直接输入函数,即可得到所求解的解析解。
2、使用MATLAB中提供的函扰誉数linsolve,solve,inv等,将方程组参数输入函数,即可得到所求解的解析解。
3、使用缓明段MATLAB中提供的fsolve函数槐磨,将非线性方程参数输入函数,即可得到所求解的解析解。
4、使用MATLAB中提供的fminsearch,fmincon等函数,将最优化问题参数输入函数,即可得到所求解的解析解。
② MATLAB实验
1.理解连续系统时域分析方法.
2.学习利用matlab对连续系统进行时域分析的方法.
3.掌握单位冲激响应和单位阶跃响应一般求解方法和基本特征,学习利用matlab求此响应的方法。
4.掌握单位冲激响应与系统稳定性、因果性之间的关系。
二、实验器材
计算机、MATLAB软件
三、实验原理
对于单输入-单输出系统的输入激励为 f (t),输出响应为y(t),则描述连续LTI系统的数学模型为n阶次的常系数线性微分方程,形式如下
[图片上传失败...(image-82e2d0-1639285196529)] (3-1)
式子中, a i = 0,1,...n,和b i =0,1,...m均为常数。
由信号与系统的分析理论值,如果描述系统的微分方程、激励和初始状态已知,我们可用经典时域求解法求出其解。但对于高阶系统,手工计算十分的繁琐,甚至很困难,这时可以用matlab工具求解。
Matlab里提供了求(3-1)解用到的函数,常用的是impluse()、step()、lism()、conv()、dsolve()。下面我们分别介绍这几个函数。
1.****连续时间系统冲激响应和阶跃响应的求解
连续LTI系统的冲激响应和阶跃响应,分别用impluse和step求解。其调用格式为
impluse (b,a) y=impluse(sys,t)
step (b,a) y=step(sys,t)
式中,t表示计算系统响应的抽样点向量,sys是LTI系统模型,它表示 微分方程,差分方程或状态方程 。其调用格式
sys = tf (b,a)
式中,b和a分别是微分方程的右端和左端系数向量。例如
[图片上传失败...(image-63fd93-1639285196529)]
用a=[a3,a2,a1,a0] ; b=[b3,b2,b1,b0] ,sys = tf (b,a) 获得其LTI模型。
例1****:已知描述某连续系统的微分方程为
[图片上传失败...(image-954b31-1639285196529)]
试利用matlab****绘出该系统的单位冲激响应和单位阶跃响应的时域波形,并根据单位冲激响应判断系统的稳定性和因果性。`1
matlab程序如下
a=[1 1 6];
b=[1];
subplot(2,1,1)
impulse(b,a)
subplot(2,1,2)
step(b,a)
程序运行后,其图形如下3-1所示。
[图片上传失败...(image-8ac458-1639285196530)]
图****3-1 系统的冲激响应和阶跃响应图
从图3-1所示的系统的单位冲激响应的时域波形可以看出,当时间t<0时系统的单位冲激响应h(t)=0,所以该系统为因果系统;同时h(t)随着时间的增长而衰减,当t趋于无穷大时时,h(t)趋于零,所以系统也是一个稳定的系统。
2.****连续时间系统零输入响应的求解
在MATLAB中,initial是求连续系统的零输入响应函数,其调用形式为
initial(sys,x0)
[y,x,t]=initial(sys,x0)
initial函数可计算出连续时间线性系统由于初始状态所引起的响应(故而称零输入响应)。当不带输出变量引用函数时,initial函数在当前图形窗口中直接绘制出系统的零输入响应。
例2****:已知描述某连续系统的微分方程为
[图片上传失败...(image-15bccf-1639285196529)]
y(0)=1,y’(0)=2, 用matlab****求其零输入响应
程序如下:
a=[1 1 6];
b=[1];
sys=tf(b,a);
sys1=ss(sys); % 转成状态变量表示
x0=[1,2]
initial(sys1,x0)
运行结果如图3-2所示
[图片上传失败...(image-f08768-1639285196530)]
图****3-2 系统的零输入响应图
3.****连续时间系统零状态响应的数值计算----- lism()
求解微分方程零状态响应的数值解。其调用格式主要有两种。
**lism(sys,f,t) y=lism(sys,f,t) **
其中,f是输入信号在向量t定义的时间点上的采样值,t是输入信号时间范围向量,sys是LTI系统模型
例3****: 已知描述某连续系统的微分方程为
[图片上传失败...(image-4a9e83-1639285196529)]
试利用matlab求出该系统当激励信号为[图片上传失败...(image-5ad649-1639285196529)] 时,系统的响应[图片上传失败...(image-348322-1639285196529)] ,并会出其波形。
matlab程序如下
a=[1 2 1];
b=[1 2];
sys=tf(b,a); %定义系统函数对象
p=0.01; %定义采样时间间隔
t=0:p:5;
f=exp(-2*t);
lsim(sys,f,t); %对系统输出信号进行仿真
程序运行后,其图形如图3-3所示。
[图片上传失败...(image-3950ed-1639285196529)]
图3-3 连续系统的响应仿真
4.****微分方程的符号解的函数dsolve()
在MATLAB中,dsolve()是求解微分方程的符号解的函数,其调用形式为
r=dsolve(‘eq1,eq2,…’,’cond1,cond2,…’,’v’)
或r=dsolve(‘eq1’,eq2’,…,’cond1’,’cond2’,…,’v’)
其中cond1、cond2….是初始条件(如没有给出初始条件,则默认为求通解),v为自变量变量。D表示一阶微分,D2为二阶微分……。函数dsolve把D后的变量当成因变量,默认为这些变量对自变量的求导。
例****4****:求二阶系统[图片上传失败...(image-9ca77c-1639285196529)] 在初始条件[图片上传失败...(image-ae497b-1639285196529)] 下的零输入响应的解、零状态响应的解及全解
matlab程序如下
yzi=dsolve('D2y+5 Dy+4 y=0','y(0)=0,Dy(0)=1')
yzs=dsolve('D2y+5 Dy+4 y=exp(-3*t)','y(0)=0,Dy(0)=0')
y=dsolve('D2y+5 Dy+4 y=exp(-3*t)','y(0)=0,Dy(0)=1')
运行结果如下
yzi =
-1/3 exp(-4 t)+1/3*exp(-t)
yzs =
1/3 exp(-4 t)+1/6 exp(-t)-1/2 exp(-3*t)
y =
1/2 exp(-t)-1/2 exp(-3*t)
即 [图片上传失败...(image-8a13eb-1639285196529)]
[图片上传失败...(image-9036d5-1639285196529)]
[图片上传失败...(image-fa7bd7-1639285196529)]
四、实验内容
1.验证实验原理中所述的相关程序
2.已知描述某连续系统的微分方程为
[图片上传失败...(image-d41f06-1639285196529)]
(1) 试利用matlab绘出该系统的冲激响应和阶跃响应的时域波形,并根据冲激响应判断系统的稳定性。
a=[1,3,2];
b=[1,2];
subplot(2,1,1)
impulse(b,a);
subplot(2,1,2)
step(b,a);
wending
(2) 当激励信号为[图片上传失败...(image-e16660-1639285196529)] 时,系统的零状态响应[图片上传失败...(image-5beb2d-1639285196529)] ,并绘出响应的波形。
a=[1,3,2];
b=[1,2];
sys=tf(b,a)
t=0:0.01:5;
f=exp(-2*t);
lsim(sys,f,t)
3.求三阶系统[图片上传失败...(image-a71fa6-1639285196529)] 在初始条件[图片上传失败...(image-40502a-1639285196529)] 下的零输入响应的解、零状态响应的解及全解。
yzi=dsolve('D2y+5*Dy+y=0','y(0)=0,Dy(0)=1')
yzs=dsolve('D2y+5 Dy+y=exp(-3 t)','y(0)=0,Dy(0)=0')
y=dsolve('D2y+5 Dy+y=exp(-3 t)','y(0)=0,Dy(0)=1')
五、实验报告要求
1.实验内容中详细说明用连续系统时域分析法的步骤与原理。
2.写出其对应的matlab程序。
3.上机调试程序的方法及实验中的心得体会。