⑴ 谁能给我推荐一本计算方法或者数值计算方面的好书
我师给我推荐本算书Introction to Algorithms文版叫算导论我现能力看英文版吧我刚编程候特别想算提高些编程技巧数据结构我用清华版社本《清华计算机系列教材•数据结构(C语言版)》吴伟民、 严蔚敏师说本讲比较齐全另外我想推荐本《Digital Design》(数字化设计)计算机本书(用)面例题(中国找pdf版本行书太贵买起)希望帮助
⑵ 介绍快速计算方法的书籍
快心算-----(心算,口算,笔算)真正与小学数学教材同步的教学模式,
快心算是目前唯一不借助任何实物进行简便运算的方法,既不用算盘,也不用手指,更不用棋盘和图
快心算教材的编排和难度是紧扣小学数学大纲并于初中代数接轨,比小学课本更简便的一门速算。简化了笔算,加强了口算。简单,易学,趣味性强,小学生通过短时间培训后,多位数加,减,乘,除,不列竖式,直接可以写出答数。
快心算的奇特效果
三年级以上任意多位数的乘除加减全部学完.
二年级多位数的加减,两位数的乘法和一位数的除法.
一年级,多位数的加减.
幼儿园中,大班小朋友可学会多位数加减法 ,多位数进位加,如5869+3516 ,多位数退位减,如 8185-6938等。为学龄前幼儿量身定做的,提前渡过小学口算这一关。小孩在幼儿园学习快心算对以后上小学有帮助
孩子们做作业不再用草稿纸,看算直接写答案.
快心算”有别于“珠心算”“手脑算”。西安教师牛宏伟发明的快心算,(牛宏伟老师获得中华人民共和国国家知识产权局颁发的专利证书。专利号;ZL2008301174275.受中华人民共和国专利法的专利保护。), 主要是通过教材中的一定规则,对幼儿进行加减乘除快速运算训练。“快心算”有助于提高孩子思维和行为的条理性、逻辑性以及灵敏性,锻炼孩子眼、手、脑的同步快速反应,计算方法和中小学数学具有一致性,所以很受幼儿家长的欢迎。
快心算真正与小学数学教材同步的教学模式:
1:会算法——笔算训练,现今我国的教育体制是应试教育,检验学生的标准是考试成绩单,那么学生的主要任务就是应试,答题,答题要用笔写,笔算训练是教学的主线。与小学数学计算方法一致,不运用任何实物计算,无论横式,竖式,连加连减都可运用自如,用笔做计算是启动智慧快车的一把金钥匙。
2:明算理—算理拼玩。会用笔写题,不但要使孩子会算法,还要让孩子明白算理。 使孩子在拼玩中理解计算的算理,突破数的计算。孩子是在理解的基础上完成的计算。
3:练速度——速度训练,会用笔算题还远远不够,小学的口算要有时间限定,是否达标要用时间说话,也就是会算题还不够,主要还是要提速。
4:启智慧——智力体操,不单纯地学习计算,着重培养孩子的数学思维能力,全面激发左右脑潜能,开发全脑。经过快心算的训练,学前孩子可以深刻的理解数学的本质(包含),数的意义(基数,序数,和包含),数的运算机理(同数位的数的加减,)数学逻辑运算的方式,使孩子掌握处理复杂信息分解方法,发散思维,逆向思维得到了发展。孩子得到一个反应敏锐的大脑。
⑶ 有哪些值得推荐的《数值分析》(数值计算方法)教材或者参考书
有:李庆扬的《数值分析》 、喻文健 的《数值分析与算法》 、关治的《数值分析基础》。
数值分析,为数学的一个分支,是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科。它以数字计算机求解数学问题的理论和方法为研究对象,为计算数学的主体部分。数值分析的目的是设计及分析一些计算的方式,可针对一些问题得到近似但够精确的结果。
数值分析中,简单的问题是求出函数在某一特定数值下的值。直觉的方法是将数值代入函数中计算,不过有时此方式的效率不佳。像针对多项式函数的求值,较有效率的方式是秦九韶算法,可以减少乘法及加法的次数。若是使用浮点数,很重要的是是估计及控制舍入误差。
求解方程,首先会依方程式是否线性来区分,例如方程式 2x+5=3是线性方程式,而2x25=3是非线性方程式。此领域许多的研究都和求解线性方程组有关。直接法是线性方程组的系数以矩阵来表示。
再利用矩阵分解的方式求解,这些方法包括高斯消去法、LU分解,对于对称矩阵(或埃尔米特矩阵)及正定矩阵可以用乔莱斯基分解,非方阵的矩阵则可以用QR分解。迭代法有雅可比法、高斯–塞德迭代法、逐次超松驰法(SOR)及共轭梯度法,一般会用在大型的线性方程组中。
⑷ 计算方法
《计算方法》是2009年7月西安电子科技大学出版社出版的图书,作者是蔺小林。
内容简介
本书是为普通高等院校“信息与计算科学专业”的学生学习“计算方法”课程所编写的教材,内容包括:误差分析、多项式插值、数值微分与积分、线性方程组的数值解法、线性最小二乘问题的数值解法、矩阵特征值和特征向量的计算、非线性方程与优化问题的数值解法、常微分方程初值问题的数值解法、偏微分方程的数值解法、快速算法、随机模拟方法。
图书目录
第一章、引论。
第二章、线性代数方程组求解方法。
第三章、非线性方程求根。
第四章、函数插值。
第五章、函数逼近。
第六章、矩阵特征值与特征向量的数值算法。
第七章、数值积分及数值微分。
第八章、常微分方程初值问题的数值解法。
第九章、自治微分方程稳定区域的计算。