A. 概率的算数计算方法
概率的算数计算方法:
柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:
设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:
(1)非负性:对于每一个事件A,有P(A)≥0;
(2)规范性:对于必然事件Ω,有P(Ω)=1;
(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……
概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生,其是客观论证,而非主观验证。如某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这些都是概率的实例。
B. 高中概率计算公式是什么
概率计算基本信息:
加法法则
P(A∪B)=P(A)+P(B)-P(AB
条件概率
当P(A)>0,P(B|A)=P(AB)/P(A)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
计算方法
“排列组合”的方法计算
记法
P(A)=A
概率公式C和A的区别
“A”是排列方法的数量,跟顺序有关。
例如:n个不同的物体,要取出m个(m<=n)进行排列,方法就是A(n,m)种。也可以这样想,排列放第一个有n种选择,第二个有n-1种选择,第三个有n-2种选择,……,第m个有n+1-m种选择,所以总共的排列方法是n(n-1)(n-2)……(n+1-m),也等于A(n,m)
“C”是组合方法的数量,跟顺序无关。
比如:C(3,2)表示从3个物体中选出2个,总共的方法是3种,分别是甲乙、甲丙、乙丙。(3个物体是不相同的情况下)
C. 概率是怎么计算的
P(A)=A所含样本点数/总体所含样本点数。实用中经常采用“排列组合”的方法计算·
定理:设A、B是互不相容事件(AB=φ),则:
P(A∪B)=P(A)+P(B)
推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1
(3)知情交易概率计算方法扩展阅读
条件概率
条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)
条件概率计算公式:
当P(A)>0,P(B|A)=P(AB)/P(A)
当P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推广:P(ABC)=P(A)P(B|A)P(C|AB)
参考资料来源:网络-概率计算