⑴ 求解非线性方程的的最优化算法C++程序
j是复数单位吗?可以试试http://dlib.net/,下面是个示例,我没有提供导数什么的,所以不稳定。它的用法和matlab挺像,你应该能搞定。
#include<dlib/optimization.h>
#include<iostream>
usingnamespacestd;
usingnamespacedlib;
typedefmatrix<double,2,1>column_vector;
typedefcomplex<double>complex_t;
intconstM=3;
staticmatrix<double,3,M>a;
voidinit(){
staticbooltag=true;
if(tag){
a=0,1,2,3,4,5,6,7,8;
tag=false;
}
}
doublefoo(constcolumn_vector&x){
init();
complex_tres;
for(inti=0;i!=a.nc();++i){
res+=exp(complex_t(
0,
a(0,i)+a(1,i)*x(0)+a(2,i)*x(1)
));
}
returnnorm(res)/M;
}
intmain(){
try{
column_vectorstarting_point;
starting_point=0,0;
doublemax_value=find_max_box_constrained(bfgs_search_strategy(),
objective_delta_stop_strategy(1e-9),
foo,derivative(foo),starting_point,-50,50);
cout<<"x0= "<<starting_point<<" foo(x0)="<<max_value<<" ";
}
catch(std::exceptionconst&e){
cerr<<e.what()<<" ";
}
return0;
}
运行结果:
⑵ 最优化计算方法的目录
第一篇线性规划
第1章线性规划的数学模型和基本性质
1.1线性规划问题及其数学模型
1.1.1 问题的提出
1.1.2线性规划问题的数学模型
1.2线性规划问题的图解法
1.2.1 图解法的步骤
1.2.2线性规划问题求解的几种可能结果
1.3线性规划的基本性质
1.3.1线性规划的基本概念
1.3.2凸集与凸集的顶点
1.3.3线性规划的基本定理
习题
第2章单纯形法
2.1单纯形法的原理
2.1.1确定初始基本可行解
2.1.2最优性检验和解的判别
2.1.3从一个基本可行解转换到相邻且改善了的基本可行解
2.2单纯形法的计算步骤
2.3人工变量的处理方法
2.3.1 大M法
2.3.2两阶段法
2.4单纯形法的有限终止性
2.5改进单纯形法
2.5.1 单纯形法的矩阵描述
2.5.2改进单纯形法
习题
第3章线性规划的对偶理论
3.1线性规划的对偶问题
3.1.1 对偶问题的提出
3.1.2原问题与对偶问题之间的对偶关系
3.2对偶性定理
3.3对偶单纯形法
3.3.1 对偶单纯形法的基本思路
3.3.2对偶单纯形法的计算步骤
3.3.3初始对偶基本可行解的求法
习题
第4章灵敏度分析和参数线性规划
4.1灵敏度分析
4.1.1参数cj的灵敏度分析
4.1.2参数6i的灵敏度分析
4.1.3 约束条件的系数列向量Ak的灵敏度分析
4.1.4增加一个新变量Xn+1的分析
4.1.5增加一个新约束条件的分析
4.2参数线性规划
习题
第5章线性规划应用实例
5.1套裁下料问题
5.2配料问题
5.3生产工艺优化问题
5.4多周期动态生产计划问题
5.5有配套约束的资源优化问题
5.6投资问题
5.6.1投资项目组合选择
5.6.2连续投资问题
5.7运输问题及其扩展
5.7.1产销平衡的运输问题
……
第二篇非线性规划
第6章非线性规划基本概念与基本原理
第7章一维搜索
第8章无约束问题最优化方法
第9章约束问题最优化方法
第三篇现代最优化算法
第10章最优化问题概论
第11章模拟退火算法
第12章遗传算法
第13章人工神经网络
参考文献
⑶ 非线性优化模型 cplex 可以求解吗
1,这两种也只能精确求解线形规划问题 2, 要看问题特性, 有些可以按照线性规划方法解最优解 3, 大规模问题,一般要用到分解算法.
⑷ 非线性非凸优化问题 怎么解 固定变量 分解 交替
您好,un为目标函数,它可用前面的方法定义;
x0为初始值;
A、b满足线性不等式约束 ,若没有不等式约束,则取A=[ ],b=[ ];
Aeq、beq满足等式约束 ,若没有,则取Aeq=[ ],beq=[ ];
lb、ub满足 ,若没有界,可设lb=[ ],ub=[ ];
nonlcon的作用是通过接受的向量x来计算非线性不等约束 和等式约束 分别在x处的估计C和Ceq,通过指定函数柄来使用,如:>>x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon),先建立非线性约束函数,并保存为mycon.m:function [C,Ceq] = mycon(x)
C = …
% 计算x处的非线性不等约束 的函数值。
⑸ 浅谈非线性无约束最优化问题的几种算法 详细�0�3
当前我国高校学生干部社会 角色扮演问题研究韩 强( 陕西理工学院, 陕西 汉中 723001) 【摘要】当前高校学生干部角色发生了异化, 导致这一结果的原因除了社会不良风气, 特别是“官场文化”的影响外, 还有高校自身管理的漏洞。而恢复“五员”的社会角色, 无疑已成为当前高校不容忽视的一项重要内容。 【关键词】学生干部; 社会角色; 异化; 五员 【中图分类号】C913 【文献标识码】A 【文章编号】1672-996X( 2009) 02-0174-02 高校学生干部一般包括各级共青团干部、学生会干部、 往往从社会生活中可以找到原型。不论是一些机关的拉关班委会成员以及各类学生社团负责人等。这支队伍是学生中 系、买官, 还是社会强势群众的以势压人、以权代法; 不论最活跃的群体, 不仅是学生辅导员、班主任的得力助手, 更 是一些领导干部的脱离群众, 还是某些行政机关中的人浮于是教师和广大学生之间沟通的桥梁和纽带, 在校园文化建 事、效率低下, 社会不良风气的影响是学生干部社会角色异设, 校风学风建设, 大学生自我教育、自我管理、自我服务 化的最主要因素。等方面起着非常重要的作用。在新的形势下, 重视学生干部 其次, 理论教育的折扣化。在许多高校中都有“两队伍建设, 提高学生干部的综合素质, 是进一步加强和改进 课”、学生干部培训班、团校以及党校等理论教育阵营, 而大学生思想政治教育、实现人才培养目标的重要环节和突破 且针对学生干部的各种理论学习班也不少, 每次培训学习的口。 学生干部有很多, 结业后还要写思想汇报、学习感悟等。形式上看很完备, 但事实上学生干部很多都抱着“没意思”、一、学生干部的异化现象当前, 学生干部的社会角色出现了异化现象。这里的异 “混张结业证”等思想参加培训班, 在理论认识上的提高几化, 是指违背学生干部性质本身的角色变异。具体来说, 主 乎为零。例如: 据调查, 某校召开学生干部理论培训班后不要有以下五种角色。 久, 在一年级参加培训的十名团支书、班长中, 有七人不能校园官僚派。学生干部中有相当一部分人“官本位”十 准确表述“三个代表”重要思想的内容; 某系十一名主要学足, 将学生干部的级别看成是“官”的台阶, 为了获取更大 生干部中, 有七人不能完整表述党的性质。的官阶, 而废尽心思。据二十一世纪人才报报道: 南方某高 再次, 学生干部自我优越感的膨胀化。学生干部作为客校“为了争夺学生会主席的位置, 有学生不惜花费1万元以 观上的校园强势群众, 不论是在机会的取得上, 利益的分配上的血本”。而类似的拉选票、请客送礼、暗箱操作、排除 上, 还是组织资源的获取上, 支配权力的空间上, 等诸多方异己等司空见惯的现象也活生生的证实了官僚派的存在, 其 面都与普通同学存在着明显的优势。在这一群体中, 职责不影响极其恶劣, 不但严重扰乱了学生干部的正常工作秩序, 同的学生干部的权力支配空间, 地缘、人缘优势也不大相而且影响了校风、学风。 同。这样, 学生干部容易产生一种优越感, 这种优势感, 超利益优先派。在高校中, 学生的管理很大程度上属于自 出了自己的职责区域, 变成了对权力资源的崇拜, 并最终导我管理, 学生干部在客观上起到了老师与学生的桥梁作用。 致官僚化社会角色。同时, 由于学生干部这一身份, 学生干部得以获取信息灵敏 最后, 学生干部管理中的考核机制、激励机制、惩处机化, 交际广泛化, 渠道多元化等客观上的优势, 从而在利益 制的不健全。高校中的学生干部群体是一个规模庞大的体分配上与获取上呈现出优先化。例如: 学生干部身份本身就 系, 其组织结构一般是金字塔型, 其管理上一般都有明确的是就业的一张优势牌, 是报考公务员的主要因素之一; 有的 规章制度。但是在诸多的规章制度中, 却很少有完善的考核学生会主席一年能净赚几万元; 学生干部有很多抛头露面的 机制、激励机制、惩处机制。在日常的工作中, 无法衡量学机会, ……我们并不反对学生干部正当利益的取得, 但构成 生干部工作的效果。导致干好干坏一个样, 干与不干一个利益优先群体的功利化现象却有悖于学生干部服务同学、顾样, 无法调动学生干部, 特别是基层学生干部的工作积极全大局的初衷。 性, 使一些学生干部的“靠山”思想、“无所谓”思想的滋强势集团派。与普通学生相比, 学生干部群体应该算是 长, 无法在普通同学中树立与提高学生干部“先进分子”的强势群体, 特别是在高层。这不仅仅是因为他们的干部身份 形象和影响力。在客观上造成了概念性影响力, 更重要的是他们客观上拥有 三、学生干部的正确角色一定可支配性权力资源, 上层交际的地缘优势和接触面的人 异化的社会角色是严重影响学生干部发展和学生公共活缘优势。与普通学生相比, 他们常常依靠权力优势、地缘优 动正常开展的潜在威胁。作为一名干部, 就要顾全大局, 树势和人缘优势等, 对他人施加影响, 获取个人利益优先化。 立正确的社会角色观, 扮演正确合理的社会角色, 那么, 在脱离群众派。我们党在长期的革命斗争中总结出一条宝 高校校园中, 学生干部究竟应扮演何种社会角色呢? 我认为贵的革命经验——群众路线, 即“从群众中来, 到群众去, 应该是“五员”角色。一切依靠群众, 一切为了群众。”作为高校的学生干部, 要 政策的宣传员。学校的各项政策、规章制度往往需要通成功起到承上启下的作用, 基点就是将群众路线贯彻到学生 过学生干部传达给其他学生, 从而保证政策、规章制度的落工作中。可在现实中, 有一部分学生干部往往忘记了这一 实。点, 高高在上, 只知道布置、安排, 而不知道身体力行, 不 信息的联络员。把上级的指示和老师的安排传递给学知道与普通学生打成一片。无形中就助长了官僚习气, 影响 生, 把学生的意见、建议和想法汇报给上级和老师, 真正在学生干部的威信。 师生间架起一道桥梁。“无过即功”派。“无过即功”派又叫消极应付派。指 活动的运动员。学生作为中间桥梁, 担负着活动的组织的是一些学生干部对自己的职责不负责任, 消极被动的干工 工作, 经常扮演的是“教练员”。实际上, 学生干部身体力作, 搞活动, 这样的学生干部在基层学生干部群体中为数不 行, 不仅能够提高效率, 拉近“干群”关系, 同时也将进一少, 特别是班级中除团支部书记、班长以外的学生干部, 表 步提高学生干部的综合素质。现的比较突出。这样的社会角色, 短期内看不到实质性危 学生的服务员。作为学生中的积极分子、优秀分子, 学害, 但长此以往, 必然导致不负责任、消极等“官僚主义” 生干部有责任也有义务服务于广大同学, 不应该去片面的计病的流行。所以, 不论是哪一层级的学生工作负责人都要警 较个人得失, 也不能带着强烈功利化色彩去担任学生干部,惕这种“无过即功”的消极思想的蔓延。 正如唐太宗所言“水能载舟, 亦能覆舟”。只要你切实为同学服务了, 学生就会支持你的工作。 二、学生干部异化的原因上文中我们列举了学生干部社会角色异化, 那么导致这 学风、校风的驾驶员。古语有云: “其身正, 不令即些角色出现的原因究竟是什么呢? 显然, 不仅仅是学生干部 行; 其身不正, 虽令不从。”高校的学生干部, 要率先遵守的个人素质问题, 而且是社会环境, 管理机制等多因素的共 校纪校规, 加强自身学风、工作作风、生活作风的建设。学同作用。具体来说, 有以下四个方面: 生干部是学校众多学生中的精英分子, 代表了学生的风貌,首先, 社会不正之风的影响。置身空前开放的社会, 我 代表了学校的形象。们不能将大学与社会割裂开来, 大学不是空中楼阁, 校园小 学生干部是高校学生管理工作中的一支重要的力量, 重社会, 社会大校园。事物是普遍联系的, 校园中的不正之风 视和加强高校学生干部队伍建设关系到高校的稳定和发展。() 下转176页下点, 并在一定程度上具有二者的优点, 是无约束最优化算法 一、数学模型中最为有效的方法之一。在一定条件下, 算法具有二次终止性、整体收敛性和超线性的收敛等性质。三、数学试验它的含义是求目标函数 在 维空间 上的最小值, 即 分别用本文所介绍的最速下降法、Newdon法、共轭梯求 使对于任意 的都有 。 度法、拟Newdon法求解去约束最优化问题:二、算法的介绍 1、最速下降法基本思想: 从某一点 出发, 选择目标函数 的负梯度方向作为每一步的搜索方向, 以利于尽快达到极小点。 下面我们对这四种算法的计算过程和结果给予简单的介特点: 的负梯度方向, 仅仅 在点的邻近才具有使 绍。函数下降最快的性质, 而对于整个求最优解的过程来说就不 最速下降法:是这样的。在一定条件下, 最速下降法是线性收敛的, 收敛 具体迭代过程见表1 速度较慢。当初始点 离最优点 较远时, 一般来说下降 表1 较快, 效果较好, 在求最优解的前期, 使用最速下降法是有利的。 2、Newdon法基本思想: 从某一点 出发, 利用目标函数 在迭代点 处的二次Taylor展开去近似目标函数, 然后精确求出这个二次函数的极小点, 以它作为目标函数极小点的近似值。特点: 在一定的条件下, 当初始点 充分接近极小点时, 有很快的收敛速度, 但是局部收敛的。如果 正定且初始点适合时它是总体收敛的, 但当初始点远离局部极小点时, 可能不正定, 也可能奇异, 这样产生的 可能 由表1可以看出当第5次迭代后的精度为 ,不是下降方向。 前后两次最速下降法的搜索方向是相互垂直的。 3、共轭梯度法 Newdon法:基本思想: 它是一个典型的共轭方向法, 它的每一个搜 索方向都是互相共轭的, 而这些搜索方向 仅仅是负梯度 , 与上一次迭代的搜索方向 的组合, 然后沿 方向进 行最优搜索。特点: 从理论上来说, 对于目标函数是正定二次函数, 利用共轭梯度法求最优解, 在 步以内必可达到极小点 , 它具有二次终止性。但在实际的计算当中, 由于计算 取初始点误差等因素的影响, 导致经过 步迭代没有得到满足精度要 , 求的解, 或者说目标函数没有进入一个正定二次函数的区域, 此时搜索方向应重新开始, 即将 作为新的初始点, 重 可见Newdon法有一步达到最优点的特点。新设置负梯度方向的措施来加速收敛。 共轭梯度法: 4、拟Newdon法 具体迭代过程见表2:基本思想: 它是一种改进的Newdon法, 也称变尺度方 表2 法。为了保持Newdon法收敛速度快的优点, 而避免 Newdon矩阵求逆的计算, 引入新的迭代矩阵序列 用以代替 ( 其中 ), 不仅要求 ,且 易于计算。 形式的拟Newdon法迭代公式是:具体迭代过程见表3: 表3 其中 为拟Newdon方向, 亦即在 尺度矩阵意义下的最速下降方向; 为修正矩阵, 为修正项, 要求 具有如下性质: i. 满足拟Newdon方程, 即 , 其中: ii. 必须是对称阵, 来保证 成为下降方向。特点: 它是结合最速下降法和阻尼Newdon法而构造的 由此表可看出拟Newdon法第一步沿负梯度方向, 两步一类新的算法, 既克服了最速下降法收敛速度慢, 又克服了 达到最优点。 Newdon法搜索方向构造较困难, Hessian矩阵计算量大的缺浅谈非线性无约束最优化问题的几种算法范慧玲( 黑龙江八一农垦大学文理学院数学系, 黑龙江 大庆 163319) 【摘要】近二十年来, 无约束最优化问题的理论与应用受到人们的重视, 发展迅速, 成果很多。本文归纳几种非线性无约束最优化问题的几种算法, 并举例说明它们的应用, 同时对各种算法的思想和特点进行总结。 -1 1 2 3 0 0 - - -
⑹ 做非线性最优化可以用哪些c++数值计算库
非线性最优化的计算,首选肯定是IPOPT了,开源,用的人最多。
SNOPT也可以,不过是商业软件,而且原生不是C++开发的,应该是FORTRAN开发的,但提供了C++的API,可以在C++中调用。
⑺ 线性约束优化问题和非线性的区别
线性规划是指 目标函数和约束条件都关于决策变量都是线性的,这样得最优化问题叫做线性规划.
如果目标函数和约束条件中至少有一个关于关于决策变量是非线性的,那么这样得最优化问题就叫非线性规划问题.
二者在求解的方法上有很大的区别.
⑻ 有哪些求解欠定方程稀疏解的非线性优化方法
原因很简单,由于你的积分表达式太复杂,Matlab的符号工具箱没法求解,换句话说不要老是认为符号工具箱是万能的即使时间再长没有办法求解出来的,这就符号求解的劣势建议直接使用数值方法求解你的那个积分另外建议你在Matlab编程是,尽量少在目标函数中使用符号计算,因为Matlab优化时需要多次调用目标函数,符号运算会慢好多