导航:首页 > 计算方法 > 复数对应的计算方法

复数对应的计算方法

发布时间:2023-08-08 11:39:36

⑴ 复数的运算公式有哪些

复数运算法则有加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。

一.复数的定义

我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

二.复数运算公式

1.加法法则:复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。

2.减法法则:复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。

3.乘法法则:规定复数的乘法按照以下的法则进行:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。

4.除法法则:复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。

⑵ 复数的计算是怎么样的

复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。

加法:实部与实部相加为实部,虚部与虚部相加为虚部。

(a+bi)+(c+di)=(a+c)+(b+d)i

减法:实部与实部相减为实部,虚部与虚部相减为虚i。

(a+bi)-(c+di)=(a-c)+(b-d)i

乘法:按多项式的乘法运算来做

(a+bi)*(c+di)=ac+adi+bci+bdi^2(i^2=-1)

=(ac-bd)+(ad+bc)i

除法:把除法写成分数的形式,再将分母实数化(就是乘其共轭复数)

(a+bi)/(c+di)=(a+bi)*(c-di)/[(c+di)(c-di)]

=[ac+bd-(ad-bc)i]/(c^2+d^2)

在实数域上定义二元有序对z=(a,b)

并规定有序对之间有运算“+”、“×”(记z1=(a, b),z2=(c, d)):

z1+ z2=(a+c, b+d)

z1× z2=(ac-bd, bc+ad)

容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,有

z=(a, b)=(a, 0) + (0, 1) × (b, 0)

令f是从实数域到复数域的映射,f(a)=(a, 0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。

以上内容参考:网络-复数

阅读全文

与复数对应的计算方法相关的资料

热点内容
腋臭用什么方法可以消除 浏览:238
做菜方法带图片 浏览:48
小数加法怎么计算方法 浏览:986
常用裂项求和方法 浏览:669
圆振筛的筛分效率计算方法 浏览:487
手机防护栏的正确方法 浏览:423
绩效考核名额最佳方法 浏览:117
一个好的方法用英语怎么说谢谢 浏览:914
获得国内外研究进展的方法 浏览:88
如何避免催婚的方法 浏览:105
汽车车身塑料件鉴别方法 浏览:219
手持示波器的使用方法 浏览:168
离婚前最简单的方法 浏览:238
设置234g网络在哪里设置方法 浏览:760
霉菌治疗方法 浏览:593
案例研究方法的应用第三版 浏览:256
电脑屏幕漏电修复方法 浏览:384
牛顿流体最佳治疗方法 浏览:95
电子门禁卡复制方法图片 浏览:220
提升学历教学方法 浏览:953