① 解方程方法
①利用等式性质解方程:首先我们利用等式方程来解方程,首先我们要了解到的就是方程左右两边同时加上或者减去同一个数,方程的解是不会变化的、方程左右两边同时乘一个不为0的数,方程的解是不会变化的、方程左右两边同时除以一个不为0的数,方程的解是不会变化的。利用这样的一个等式的性质来解方程是比较方便的也不会出现错误,最终可以将方程化简为一个比较简单的式子,直接可以得出答案!
②简化法解方程:对于一些比较复杂的方程来说,对于方程的式子做一个简化是相当关键的,所以在简化的时候需要对于方程内部的一些式子根据等式的性质来做出一个化简,最终将一个两步方程或者是三步方程化简成为一个一步方程,如果你不嫌麻烦的话是可以最终继续使用等式的性质来解方程,这样就能成功算出答案,而且还不会太费劲,也不会出现其他的问题,解体比较简单。
③加减乘除各部分关系解方程:加减乘除作为四则运算方式,在方程中是一定会存在的,可以根据加法、减法、乘法、除法四个方面的关系来解方程,在减法的过程中可以利用被减数=差+减数的关系,而且乘法是可以用一个因数=积除以另外一个因数来解答,其中加法和除法都是一样的,只不过需要反过来计算。
解方程之后还有一步是最关键的,就是需要通过检验,用检验来验证一个得出来的解是不是成立的,主要是将这个得出来的解带入到所求的一个未知数里面,这样看一下等式是不是成立,这样才能得出一个原方程的解,如果等式没办法成立的话,则是意味着解是错误的,应该重新计算。
② 方程组怎么解
解方程组的方法大致上有画图法、矩阵法、代入法、消元法等等。
1、代入法
如要解决以下方程组︰
(2)解复杂方程的方法视频讲解扩展阅读:
消元思想
“消元”是解二元一次方程组的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。
消元方法一般分为:代入消元法,简称:代入法 ;加减消元法,简称:加减法 ;顺序消元法 ;整体代入法。
代入消元法
将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法。
加减法
当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法。
换元法
解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。
③ 小学五年级数学解方程视频教学
小学五年级数学解方程优酷教学视频:网页链接
解方程常用基本方法:
1,利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
(1)方程的左右两边同时加上或减去同一个数,方程的解不变。
(2)方程的左右两边同时乘同一个不为0的数,方程的解不变。
(3)方程的左右两边同时除以同-个不为0的数,方程的解不变。
2,两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
3,根据加减乘除法各部分之间的关系解方程。
(1)根据加法中各部分之间的关系解方程。
(2)根据减法中各部分之间的关系解方程,在减法中,被减速=差+减数。
(3)根据乘法中各部分之间的关系解方程,在乘法中,一个因数=积/另一个因数
(4)根据除法中各部分之间的关系解方程。
(3)解复杂方程的方法视频讲解扩展阅读:
解方程依据:
1,移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2,等式的基本性质
性质一
等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1) a+c=b+c (2) a-c=b-c
性质二
等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:a×c=b×c 或 a/c=b/c
性质三
若a=b,则b=a(等式的对称性)。
性质四
若a=b,b=c则a=c(等式的传递性)。