导航:首页 > 计算方法 > 期望值计算方法

期望值计算方法

发布时间:2022-01-30 12:13:58

1. 什么是数学期望如何计算

数学期望是试验中每次可能结果的概率乘以其结果的总和。

计算公式:

1、离散型:

离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:

2. 计算期望值的公式是什麽

一件不确定的事件有确定的所有结果,把第一种的结果值记为s1,它发生的概率记为p1,第二种结果值记为s2,它发生的概率为p2,... 第n种结果值记为sn,它发生的概率记为pn ... 那么期望值 Ex=s1*p1+s2*p2+...+sn*pn+...

3. 期望值怎么

E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)

X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)

如果X是连续的随机变量,存在一个相应的概率密度函数(也就是说一个随机变量的输出不会影响另一个随机变量的输出。)

例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以将相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。

考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况37种”,结果约等于-0.0526美元。

也就是说,平均起来每赌1美元就会输掉5美分,即美式轮盘以1美元作赌注的期望值为 负0.0526美元。

4. 数学期望,方差的计算公式是

方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。

若x1,x2,x3......xn的平均数为m

则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]

方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。

对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。

离散型:

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。

5. 期望值计算公式

每种情况x乘对应概率之和。如骰子有1,2,3,4,5,6
情况
期望就是1x1/2+2x1/2+3x1/2+...+6x1/2=21/2

6. 数学期望的公式是什么

E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)

X ;1,X ;2,X ;3,……,X。

n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn).

(6)期望值计算方法扩展阅读

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。

7. 求一个简单游戏中的期望值计算方法

首先要明确期望是什么,期望就是概率与取值的乘积的和,然而取值有两个,一个是7,一个事-3,7的概率是1/6,而-3的概率是5/6,所以期望EX=7*(1/6)+(-3)*(5/6)=-8/6,这才是正确的期望值。

8. 数学里面期望值是什么怎么算

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

期望值计算:

(8)期望值计算方法扩展阅读:

期望值学术解释:

1.期望值是指人们对所实现的目标主观上的一种估计;

2.期望值是指人们对自己的行为和努力能否导致所企求之结果的主观估计,即根据个体经验判断实现其目标可能性的大小;

3.期望值是指对某种激励效能的预测;

4.期望值是指社会大众对处在某一社会地位、角色的个人或阶层所应当具有的道德水准和人生观、价值观的全部内涵的一种主观愿望。

期望的来源:

在17世纪,有一个赌徒向法国着名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,分配这100法郎:

用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。

可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。

9. 期望值公式

离散型随机变量X的取值为

(9)期望值计算方法扩展阅读:

数学期望的来历:

在17世纪,有一个赌徒向法国着名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。

当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。

因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。

可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。

阅读全文

与期望值计算方法相关的资料

热点内容
擦伤脓水怎么处理方法 浏览:999
简易平行度测量方法 浏览:294
自动还原芯片安装方法 浏览:645
常用说明方法讲解 浏览:414
脚气怎么办用什么方法最好 浏览:336
生物钟快速调节方法 浏览:14
免费买水方法视频教程 浏览:970
多海域训练方法 浏览:797
怎么用好的方法教导孩子 浏览:376
泡澡的方法视频 浏览:329
教学方法含义及区别 浏览:775
格力空调冬季使用方法 浏览:55
肠胃癌治疗方法 浏览:55
家庭教育中有哪些好的教育方法 浏览:774
解决分析方法应用中的技术问题 浏览:875
双时间步方法的应用分析 浏览:572
测量血压的方法与流程 浏览:851
雕花胶使用方法图解 浏览:285
暖风机散热器堵塞解决方法 浏览:902
盘式曝气器安装方法 浏览:306