㈠ 四则运算的方法及例题
在数学中,当一级运算(加减)和二级运算(乘除)同时出现在一个式子中时,它们的运算顺序是先乘除,后加减,如果有括号就先算括号内后算括号外,同一级运算顺序是从左到右,这样的运算叫四则运算.
四则是指加法、减法、乘法、除法的计算法则.
一道四则运算的算式并不需要一定有四种运算符号,一般指由两个或两个以上运算符号及括号,把多数合并成一个数的运算.
加减互为逆运算;乘除互为逆运算;乘法是加法的简便运算.
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×〔15.5-(3.21+5.79)〕
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
469×12+1492
405×(3213-3189)
㈡ 加减乘除的运算法则是什么
加减乘除法是基本的四则运算,在没有括号的情况下,运算顺序为先乘除,再加减。
加减法:
(1)交换律:a+b=b+a ,a-b=-b+a
(2)结合律:a+b+c=a+(b+c),a+b-c=a+(b-c)
乘法:
(1)交换律,ab=ba
(2)结合律,a(bc)=(ab)c
(3)分配律,a(b+c)=ab+ac
除法:
100(被除数) ÷ 2(除数) = 50(商)
(2)用加减乘除四种计算方法扩展阅读:
实虚数的加法运算:
实数之间的加法
a+(-b)=a-b
(-a)+(-b)=-(a+b)
a+0=a
虚数之间的加法
(a+bi)+(c+di)=(a+c)+(b+d)i,(其中i=√-1。为虚数单位)
向量的加法:a+b
加数+加数=和
㈢ 加减乘除法的计算方法是什么
还有给孩子用的速算法:
十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
㈣ 加减乘除的简便运算方法
加减乘除的简便计算方法:
复习重点:
1、小数加、减的计算方法及应用加法运算律进行简便计算。
2、小数乘(除)以整数的计算方法、小数点位置移动引起小数大小变化的规律
3、小数乘(除)以小数的计算方法、求积(商)的近似值、应用乘法运算律进行简便计算。
复习难点:
1、应用加法运算律进行简便计算。
2、
小数点位置移动引起小数大小变化的规律。
3、
求积(商)的近似值和应用乘法运算律进行简便计算
教学过程:
一:知识梳理:
小数四则混合运算和简便计算。
(1)小数加减法要相同数位上的数对齐。小数乘法末尾对齐。
(2)小数乘法:先按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。积的末尾有0要化简。
(3)小数除以整数:除到哪一位,商就写在哪一位上,商的小数点和被除数的小数点对齐,商的整数部分不够商1,个位上就写0,如果除到被除数的末尾还有余数,添0再继续除。小数除以小数,先把除数变成整数,除数的小数点右移几位,被除数的小数点也向右移动相同的位数,再按除数是整数的小数除法计算。
(4)循环小数、近似数(四舍五入法,进一法,去尾法)。
(5)简便计算:运算律的运用和一些特殊的运算方法,(去括号的时候如果括号前面是减号和除号要注意变符号,例如:
a÷(b×c)=a÷b÷c,a-b-c=a-(b+c),a-(b-c)=a-b+c)