导航:首页 > 计算方法 > 平面x0的计算方法

平面x0的计算方法

发布时间:2023-06-09 21:12:32

A. 平面向量的所有公式

1、加法

向量加法的三角形法则,已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

2、减法

AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。-(-a)=a、a+(-a)=(-a)+a=0、a-b=a+(-b)。

3、数乘

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。

4、数量积

已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

5、向量积

向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b,向量积示意图则∠AOB=θ 叫做向量a与b的夹角,记作<a,b>。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。向量积几何意义是以a和b为边的平行四边形面积,即S=|a×b|。

6、混合积

给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c。

(1)平面x0的计算方法扩展阅读

物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。

现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。

B. 平面向量计算方法

向量的运算

加法运算
向量加法的定义
已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=AC
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。(首尾相连,连接首尾,指向终点) 同样,作AB=a,且AD=BC,再作平行AD的BC=b,连接DC,因为AD∥BC,且AD=BC,所以四边形ABCD为平行四边形,AC叫做a与b的和,表示为:AC=a+b.这种方法叫做向量加法的平行四边形法则。(共起点,对角连)。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。
|a-b|≤|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。

减法运算
AB-AC=CB,这种计算法则叫做向量减法的三角形法则。(共起点,连终点,方向指向被减向量)
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa= 0。
设λ、μ是实数,那么:(1)(λμ)a= λ(μa)(2)(λ + μ)a= λa+ μa(3)λ(a± b) = λa± λb(4)(-λ)a=-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。

坐标运算
已知a=(x1,y1),b=(x2,y2)
则a+b=(x1i+y1j)+(x2i+y2j)
=(x1+x2)i+(y1+y2)j
即 a+b=(x1+x2,y1+y2)。
同理可得 a-b=(x1-x2,y1-y2)。
这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
由此可以得到:
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
根据上面的结论又可得
若a=(x,y),则λa=(λx,λy)
这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。

向量的数量积
向量数量积定义:
(1)向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b,则角AOB=θ叫做向量a与b的夹角。
(2)已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a·b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a·b的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2 向量的数量积的性质
(1)a·a=∣a∣^2≥0
(2)a·b=b·a
(3)k(ab)=(ka)b=a(kb)
(4)a·(b+c)=a·b+a·c
(5)a·b=0<=>a⊥b
(6)a=kb<=>a//b
(7)e1·e2=|e1||e2|cosθ=cosθ

向量的混合积
定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c
混合积具有下列性质:
1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)
2、上性质的推论:三向量a、b、c共面的充要条件是(abc)=0
3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)
4、(a×b)·c=a·(b×c)

阅读全文

与平面x0的计算方法相关的资料

热点内容
曼妥思加可乐解决方法 浏览:508
简单的扣子画制作方法 浏览:589
请查收挑选食用油的方法大盘点 浏览:974
管理时间的方法有哪些 浏览:666
补胎工具最简单的方法 浏览:408
桃花运鉴定方法视频 浏览:802
三七花泡茶的正确方法 浏览:591
空调线管隐藏安装方法 浏览:410
索赔的利率计算方法 浏览:727
房间砌体方正度测量方法 浏览:645
弹簧鱼钩的使用方法 浏览:446
pc肌的锻炼方法女 浏览:279
约克夏犬训练方法 浏览:191
玛卡能泡酒的功效与食用方法 浏览:705
苹果电脑设置一键还原方法 浏览:289
天正钢筋安装方法 浏览:227
101乘87简便运算方法 浏览:335
小米搜狗输入法快捷键设置在哪里设置方法 浏览:965
锅底清洗有哪些方法 浏览:848
柠檬水怎么制作方法 浏览:469