A. 山东大学计算数学考研经验分享
我是一个普通一本“三跨”考生,我本科是数学类,跨考计算机类 , 经历重重磨难,终于如愿所偿。
总结
专业课的内容大部分是来源于书本,即使可能有超纲题,也是有章可循,要么就是学校老师的研究热点或者是他某本书中的内容,学好书本上的知识是可以应付的,但切记勿照搬书本,书本上刻板的答案很容易引起老师的反感,得分不是很高,尽量自己整理和归纳。
B. 追赶法matlab
function x=zhuiganfa
%首先说明:追赶法是适用于三对角矩阵的线性方程组求解的方法,并不适用于其他类型矩阵。
%定义三对角矩阵A的各组成单元。方程为Ax=d
% b为A的对角线元素(1~n),a为-1对角线元素(2~n),c为+1对角线元素(1~n-1)。
% A=[2 -1 0 0
% -1 3 -2 0
% 0 -2 4 -3
% 0 0 -3 5]
a=[0 -1 -2 -3];c=[-1 -2 -3];b=[2 3 4 5];d=[6 1 -2 1];
n=length(b);
u0=0;y0=0;a(1)=0;
%“追”的过程
L(1)=b(1)-a(1)*u0;
y(1)=(d(1)-y0*a(1))/L(1);
u(1)=c(1)/L(1);
for i=2:(n-1)
L(i)=b(i)-a(i)*u(i-1);
y(i)=(d(i)-y(i-1)*a(i))/L(i);
u(i)=c(i)/L(i);
end
L(n)=b(n)-a(n)*u(n-1);
y(n)=(d(n)-y(n-1)*a(n))/L(n);
%“赶”的过程
x(n)=y(n);
for i=(n-1):-1:1
x(i)=y(i)-u(i)*x(i+1);
end
C. 数值分析的内容简介
《数值分析(高校教材)》系统地阐述了数值分析的基本知识,介绍了各种数值计算方法,全书共分十三章。第一章介绍数值计算的基本概念和误差分析的知识;第二章介绍非线性方程的数值解法,包括二分法、迭代法、牛顿法和弦截法;第三章介绍函数插值,包括拉格朗日插值和牛顿插值;第四章介绍数值微分及理查森外推法;第五章介绍数值积分,包括梯形法、龙贝格算法和辛普生法;第六章介绍线性方程组的求解,包括高斯消去法、解三对角线方程组的追赶法、LU分解法、雅可比迭代法、赛德尔迭代法及松弛法;第七章介绍非线性方程组的求解,包括雅可比迭代法、赛德尔迭代法、松弛法及牛顿一拉夫森法;第八章介绍样条函数在插值及数值微分中的应用;第九章介绍回归分析方法,包括一元线性回归、多元线性回归及多项式拟合;第十章介绍常微分方程的数值解,包括求解初值问题的欧拉法、四阶龙格一库塔法和求解边值问题的打靶法、有限差分法;第十一章介绍三种典型偏微分方程的数值解法,包括求解抛物型方程的显式差分、隐式差分和克拉克一尼科尔森六点格式及求解双曲型方程、椭圆型方程的有限差分法;第十二章介绍最优化方法,包括单变量函数优化的黄金分割法、插值法、无约束多变量函数优化的单纯形法和有约束优化的BOX复合形法;第十三章介绍Monte Carlo模拟的应用,包括在数值积分、数学建模、高分子科学研究中的应用。
D. 计算方法
计算方法又称数值分析。是为各种数学问题的数值解答研究提供最有效的算法,计算方法主要内容包括函数逼近论、数值微分、数值积分、误差分析等,常用方法有迭代法、差分法、插值法、有限元素法等,现代计算方法要求适应电子计算机的特点。
误差与原则误差种类模型误差、观测误差、截断误差和舍入误差,法则加减运算近似数加减时,把其中小数位数较多的数四舍五入,使其比小数位数最少的数多一位小数,计算保留的小数位数与原近似数最小数位数最少者相同。
乘除运算近似数乘除时,各因子保留位数应比小数位数最少的数多一位小数,计算保留的小数位数与原近似数最小数位数最少者位数至多少一位,乘方与开方运算近似数乘方与开方时,计算保留的小数位数与原近似数位数相同,对数运算近似数对数时,计算保留的小数位数与原近似数位数相同,注意避免两个相近的数相减,避免除数绝对值远远小于被除数绝对值的除法,避免大数吃掉小数,计算讲效率,尽可能减少运算。
计算方法的特点
插值方法Lagrange插值线性插值、抛物线插值,Newton插值,分段插值,Hermite插值,分段三次Hermite插值,三次样条插值,最小二乘法直线拟合与多项式拟合,数值积分机械求积法梯形公式、中矩形公式、Simpson公式,Newton-Cotes求积法,复化求积法复化梯形公式、复化Simpson公式、复化Cotes公式,Romberg求积法,Guass求积法,数值微分求积法。
常微分方程的数值解法尤拉方法尤拉法、隐式尤拉法、二步尤拉法,改进尤拉方法,龙格-库塔方法,线性多步法亚当姆斯方法, 方程求根的数值解法二分法,迭代法,埃特金法,牛顿法牛顿下山法,近似牛顿法简化牛顿法、弦截法抛物线法,线性方程组的解法高斯消去法顺序消去法、列主元消去法、全主元消去法,矩阵三角分解法,追赶法平方根法,范数,简单迭代法Jacobi迭代法,Gauss-Seidel迭代法。