❶ 风载荷计算公式
以下是中达咨询给大家带来的关于风载荷计算公式的相关内容,以供参考。
风荷载也称风的动压力,是空气流动对工程结构所产生的压力。风荷载ш与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。
中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;枯判冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。台风造成的风灾事故较多,影响范围也较大。雷暴大风可能引起小范围内的风灾事故。
风载荷计算公式:
垂直于建筑物表面上的风荷载标准值,应按下述公式计算:
1当计算主要承重结构时,按式:wk=βzμsμzWo
式中wk—风荷载标准值(kN/m2);
βz—高度z处的风振系数;
μs—风荷载体型系数;
μz—风压高度变化系数;
Wo—基本风压(kN/㎡)。
2当计算围护结构时,按式:wk=βgzμslμzWo
式中βgz—高度z处的阵风系数;
μsl--风荷载局部体型系数。
风荷载参数:
基本风压
中国规定的基本风压w0以一般空旷平坦地面、离地面10米高、风速时距为10分钟平均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年),统计得最大风速v(即年最大风速分布的96.67%分位值,并按w0=ρv2/2确定。式中ρ为空气质量密度;v为风速)。根据统计,认为离地面10米高、时距为10分钟平均的年最大风压,统计分布可按极值I型考虑。基本风压因地而异,在中国的分布情况是:台湾和海南岛等沿海岛屿、东南沿海是最大风压区,由台风造成。东北、华北、西北的北部是风压次大区,主要与强冷气活动相联系。青藏高原为风压较大区,主要由海拔高度较高所造成。其他内陆地区风压都较小。
风速:
风速随时间不断变化,在一定的时距Δt内将风速分解为两部分:一部分是平均风速的稳定部分;另一部分是指风速的脉动部分。为了对变化的风速确定其代表值作为基本风压,一般用规定时距内风速的稳定部分作为取值标准。
建筑设计中的取用:基本风压应按《建筑结构荷载规范》附录D.4中附表D.4给出的50年一遇的风压采用,但不得小于0.3kN/m2。
对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。
当城市或建设地点的基本风压值在本规范全国基本风压图上没有给出时,基本风压值可根据当地年最大风速资料,按基本风压定义,通过统计分析确定,分析时应考虑样本数量的影响(参见附录D)。当地没有风速资料时,可根据附近地区规定的基本风压或长期资料,通过气象和地形条件的对比分析确定;也可按本规范附录D中全国基本风压分布图近似确定。
风荷载的组合值、频遇值和准永久值系数可分别取0.6、0.4和0。
平均时距
按风速记录为确定最大平均风速而规定的时间间隔。规定的时距愈短,所得的最大平均风速愈大,也即基本风压愈大。当前世界各国所采用的平均时距标准并不一致,例如,中国时距取10分钟,苏联取2分钟,英国根据建筑物或构件的尺寸不同,分别取3秒、5秒和15秒,日本取瞬时。美国以风程1609.3米(1英里)作为确定平均风速的标准,这相当于对不同风速取不同的平均时距。因而各国基本风压值的标准也有差别。
风压高度变化系数
从某一高度的已知风压(如高度为10米的基本风压),推算另一任意高度风压的系数。风压高度变化系数随离地面高度增加而增大,其变化规律与地面粗糙度及风速廓线直接有关。设计工程结构时应在不同高度处取用对应高度的风压值。
对于平坦或稍有起伏的地形,风压高度变化系数应根据地面粗糙度类别按表8.2.1确定。
地面粗糙度可分为A、B、C、D四类:
——A类指近海海面和海岛、海岸、湖岸及沙漠地区;
——B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;
——C类指有密集建筑群的城市市区;
——D类指有密集建筑群且房屋较高的城市市区。
地面粗糙度
地面因障碍物形成影响风速的粗糙程度。风(气流)在接近地面运消伍动时,受到树木、房屋等障碍物的摩擦影响,消耗了一部分动能,使风速逐渐降低。这种影响一般用地面粗糙度衡量。地面粗糙度愈大,同一高度处的风速减弱愈显着。一般地面粗糙度可由小而大列为水面拿败或、沙漠、空旷平原、灌木、村、镇、丘陵、森林、大城市等几类。
风速廓线
风速通常随离地面高度增大而增加。增加程度主要与地面粗糙度和温度梯度有关。达到一定高度后,地面的摩擦影响可忽略不计,该高度称为梯度风高度。梯度风高度随地面粗糙度而异,一般约为300~500米。梯度风高度以内的风速廓线一般可用指数曲线表示。
风载体型系数
也称空气动力系数,它是风在工程结构表面形成的压力(或吸力)与按来流风速算出的理论风压的比值。它反映出稳定风压在工程结构及建筑物表面上的分布,并随建筑物形状、尺度、围护和屏蔽状况以及气流方向等而异。对尺度很大的工程结构及建筑物,有可能并非全部迎风面同时承受最大风压。对一个建筑物而言,从风载体型系数得到的反映是:迎风面为压力;背风面及顺风向的侧面为吸力;顶面则随坡角大小可能为压力或吸力。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
❷ 求抗风压计算方法
一、计算依据二、风荷载计算1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为蔽卖亏2400mm,杆件两边的最大受力宽度为:1375mm,;推拉配悄窗的受力杆件QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。2、风荷载标准值的计算风荷载标准值ωk=βzμSμZωO (资料 ③P24式7.1.1-1)ωk—风荷载设计标准值 βZ—高度Z处的阵风系数, (资料③P44表7.5.1)μS—风荷载体型系数,取μS =0.8 (资料③P27表7.3.1)ωO—基本宏神风压,取http://bbs2.zhulong.com/forum/detail1854085_1.html
❸ 风荷载计算中,A和Pi怎么算的,谢谢
A为拿拆每榀框架承受风荷游敏毁载的范围(水平方向)
Pi为 βzμsμzWoA相乘得到的水平力神备
❹ 为什么门刚计算主结构时屋面风荷载全是风吸力
因为伯努力效灶亏应指流体流动速核散度越快,其静压强越小。
风载荷有压力,是因为风吹过来后对屋面或者墙体周围产生压力。风载荷产生吸力是因为伯努力效应指流体流动速度越快,其静压强越小。风载荷应指垂直于气流方向的平面所受的风的压力。
风载荷计算式如下:式中C风力系数,用以考虑受风结构物体体型、尺寸等因素对风压的影响。Kh风力高度变化系数。q计算风压。A起重机或起吊物品垂直与隐氏神风向的迎风面积。风压方向的问题是,重力方向向下对钢架就是压力了,反之就是吸力了
❺ 门式刚架内力计算方法
对于变截面门式刚架,应采用弹性分析方法确定各种内力,只有当刚架的梁柱全部为等截面时才允许采用塑性分析方法,但后一种情况在实际工程中已很少采用。进行内力分析时,通常把刚架当作平面结构对待,一般不考虑蒙皮效应,只是把它当作安全储备。当有必要且有条件时,可考虑屋面板的应力蒙皮效应。蒙皮效应是将屋面板视为沿屋面全长伸展的深梁,可用来承受平面内的荷载。面板可视为承受平面内横向剪力的腹板,其边缘构件可视为翼缘,承受轴向拉力和压力。与此类似,矩形墙板也可按平面内受剪的支撑系统处理。考虑应力蒙皮效应可以提高刚架结构的整体刚度和承载力,但对压型钢板的连接有较高的要求。
变截面门式刚架的内力通常采用杆系单元的有限元法(直接刚度法)编制程序上机计算。计算时将变截面的梁、柱构件分为若干段闷颂坦,每段的几何特性当作常量,也可采用楔形单元。地震作用的效应可采用底部剪力法蚂桐分析确定。当需要手算校核时,可采用一般结构力学方法(如力法、位移法、弯矩分配法等)樱灶或利用静力计算的公式、图表进行。
根据不同荷载组合下的内力分析结果,找出控制截面的内力组合,控制截面的位置一般在柱底、柱顶、柱牛腿连接处及梁端、梁跨中等截面,控制截面的内力组合主要有:
(1)最大轴压力Nmax、和同时出现的M及V的较大值。
(2)最大弯矩Mmax和同时出现的V及N的较大值。
这两种情况有可能是重合的。以上是针对截面双轴对称的构件而言的。如果是单轴对称截面,则需要区分正、负弯矩。
鉴于轻型门式刚架自重很轻,锚栓在强风作用下有可能受到拔起的力,还需要第3种组合。
(3)最小轴压力Nmin和相应的M及V,出现在永久荷载和风荷载共同作用下,当柱脚铰接时M=0。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
❻ 风荷载计算
风载荷计算有两种:1、按风压计算:迎风面积乘以风压值乘以迎风系数;2、迎风面积乘以相对风速阻力值乘以迎风面积系数;