A. 高等代数中解线性方程组的方法有几种
高等代数中解线性方程组的方法:分两大类:
一、直接法:按选元分不选主元法和选主元法(列选、全选)。接不同消元方法又分:1、高斯消元法。2、高斯主元素法。3、三角解法。4、追赶法。
二、迭代法:1、雅可比迭代法。2、高斯—塞德尔迭代法。3、超松驰迭代法。
B. 线性方程组的解的三种情况是什么
第一种是无解。也就是说,方程之间出现有矛盾的情况。
第二种情况是解为零。这也是其次线性方程组唯一解的情况。
第三种是齐次线性方程组系数矩阵线性相关。这种情况下有无数个解。
线性方程组是各个方程关于未知量均为一次的方程组(例如2元1次方程组)。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。
1、解线性方程组的方法大致可以分为两类:直接方法和迭代法。直接方法是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法;迭代法是从解的某个近似值出发,通过构造一个无穷序列去逼近精确解的方法。
2、消去法:Gauss(高斯)消去法——是最基本的和最简单的直接方法,它由消元过程和回代过程构成,基本思想是:将方程组逐列逐行消去变量,转化为等价的上三角形方程组(消元过程);然后按照方程组的相反顺序求解上三角形方程组,得到原方程组的解(回代过程)。
优缺点:简单易行,但是要求主元均不为0,适用范围小,数值稳定性差。
列主元素消去法——基本思想是在每次消元前,在要消去未知数的系数中找到绝对值大的系数作为主元,通过方程对换将其换到主对角线上,然后进行消元。
优点:计算简单,工作量大为减少,数值稳定性良好,是求解中小型稠密线性方程组的最好方法之一。
全主元素消去法——基本思想是在全体待选系数a(ij)(k)中选取主元,并通过行与列的互换把它换到a(kk)(k)的位置,进行消元。
优缺点:这种方法的精度优于列主元素法,它对控制舍入误差十分有效,但是需要同时作行列变换,因而程序比较复杂,计算时间较长。
3、直接三角分解法:消元过程实际上是把系数矩阵A分解成单位下三角形矩阵与上三角形矩阵乘积的过程,其中L为单位下三角形矩阵,U为上三角形矩阵。这种分解过程称为杜利特尔(Doolittle分解),也称为LU分解。当系数矩阵进行三角分解后,求解方程组Ax = b的问题就等价于求解两个三角形方程组Ly=b和Ux=y。
矩阵的直接三角分解——设A为n阶方阵,若A的顺序主子式A(i)均不为0,则矩阵A存在唯一的LU分解;直接三角分解法——如果线性方程组Ax = b的系数矩阵已进行三角分解A=LU,则解方程组Ax=b等价于求解两个三角形方程组Ly=b和Ux=y。
列主元素的三角分解法——设矩阵A非奇异,则存在置换矩阵P,使得PA有唯一的LU分解(即PA=LU),且|l(ij)|≤1。
4、排列阵:单位矩阵经过若干次行变换所得到的矩阵。
5、克劳特(Crout)分解:将矩阵A分解成一个下三角形矩阵L与一个单位上三角形矩阵U的乘积。
6、特殊矩阵的三角分解法:在工程实际计算中,如三次样条插值或用差分法求解常微分方程边值问题,导出的线性方程组的系数矩阵A常常是稀疏的三对角形矩阵或A是对称正定阵,使得A的三角分解也具有更简洁的形式。
C. 求解线性方程组的方法
解线性方程组的方法:
①克莱姆法则.用克莱姆法则求解方程组 有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。
②矩阵消元法.将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵 ,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。
D. 线性方程组有哪些解法
第一种 消元法 ,此法 最为简单,直接消掉只剩最后一个未知数,再回代求余下的未知数,但只适用于未知数个数等于方程的个数,且有解的情况.
第二种 克拉姆法则,如果行列式不等于零,则用常数向量替换系数行列式中的每一行再除以系数行列式,就是解;
第三种 逆矩阵法,同样要求系数矩阵可逆,直接建立AX=b与线性方程组的关系,X=A^-1.*b就是解
第四种 增光矩阵法,利用增广矩阵的性质(A,b)通过线性行变换,化为简约形式,确定自由变量,(各行中第一个非零元对应的未知数除外余下的就是自由变量),对自由变量进行赋值,求出其它未知数,然后写成基础解析的形式,最后写出通解.
这种方法需要先判别:增广矩阵的秩是否等于系数矩阵的秩,相等且小于未知数个数,则无穷多解;等于未知数个数,唯一解.秩不想等,无解.
第五种 计算机编程,随便用个软件,譬如Matlab,输入密令,
目前这5中教为适用,适合一切齐次或者非齐次线性方程组.