① 求解二阶原点矩、二阶中心矩
E表示求期望,X表示样本数据,则二阶原点矩就是E(X^2),二阶中心距就是E((X-EX)^2)。
均方差是不是二阶原点矩,均方差也称标准差,二阶原点矩应该是方差才对,也就是均方差的平方。
二阶(非中心)矩就是对变量的平方求期望,二阶中心矩就是对随机变量与均值(期望)的差的平方求期望。为什么要用平方,因为如果序列中有负数就会产生较大波动,而平方运算就好像对序列添加了绝对值,这样更能体现偏离均值的范围。
(1)二阶原点距两种计算方法扩展阅读:
中心矩则类似于方差卖闷歼,先要得出样本的期望即均值,然后计算出随机变量到样本均值的一种距离,与方差不同的是,这里所说的距离不再中冲是罩斗平方就能构建出来的,而是k次方。这也就不难理解为什么原点矩和中心矩不是距离的“距”,而是矩阵的“矩”了。
都知道方差源于勾股定理,这就不难理解原点矩和中心矩了。还能联想到力学中的力矩也是“矩”,而不是“距”。力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。力矩也是矢量,它等于力乘力臂。