计算方法——
(1)排列数公式
排列用符号A(n,m)表示,m_n。
计算公式是:A(n,m)=n(n-1)(n-2)??(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)?1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)组合数公式
组合用符号C(n,m)表示,m_n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
(1)数学a54的计算方法扩展阅读:
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m_n,m与n均为自然数。
(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
㈡ 排列组合A几几的 C几几的怎么算
计算方式如下:
C(r,n)是“组合”,从n个数据中选出r个,C(r,n)=n!/[r!(n-r)!]
A(r,n)是“选排列”,从n个数据中选出r个,并且对这r个数据进行排列顺序,A(r,n)=n!/(n-r)!
A(3,2)=A(3,1)=(3x2x1)/1=6
C(3,2)=C(3,1)=(3x2)/(2x1)=3
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。
定义的前提条件是m≦n,m与n均为自然数。
1、从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
3、用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。
解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。
A(6,6)=6x5x4x3x2x1=720。
A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。
㈢ 排列组合A几几的 C几几的怎么算比如A 3 2
A(3,2)=3×2。
组合数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为
n元集合A中不重复地抽取m个元素作成的一个组合实质上是A的一个m元子集合。
排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
㈣ 高中数学概率A几几怎么算请告诉我公式是什么谢谢!
A(n,m)是组合公式,表示从n个数中选取m个数进行随机排列能有几种方法,数相同但是顺序不同得到的方法是不相同的。
A(n,m)就是从n向1方向的前m个数相乘,A(n,m)=n*(n-1)*(n-2)*...*(n-m+1)。
给你举个例子,A(4 在下,3在上)=4*3*2。
再例如A(n,3)=n*(n-1)*(n-2)。
概率的计算
是根据实际的条件来决定的,没有一个统一的万能公式。解决概率问题的关键,在于对具体问题的分析。然后,再考虑使用适宜的公式。
但是有一个公式是常用到的:
P(A)=m/n
“(A)”表示事件
“m”表示事件(A)发生的总数
“n”是总事件发生的总数