导航:首页 > 计算方法 > 共梯度计算方法

共梯度计算方法

发布时间:2023-04-24 20:59:51

A. 共轭梯度法是什么

共轭梯度法指的是:

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免散含了牛顿法需要存储和计算Hesse矩阵并求逆的缺点。

共轭梯度法不仅是解茄凳决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

共轭梯度法的提出和应用:

共轭梯度法最早是由Hestenes和Stiefle提出来的,在这个基础上,Fletcher和Reeves 首先提出了解非线性最优化问题的共轭梯度法。由于共轭梯度法不需要矩阵存储,且有较快的收敛速度和二次终止性等优点,现在共轭梯度法已经广泛地应用于冲纳笑实际问题中。

B. 函数的偏导数,方向导数和梯度怎么计算

1、当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。

方向导数和梯度计算方法如下图:

(2)共梯度计算方法扩展阅读:

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

f"xy与f"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f"xy 与 f"yx 都连续时,求导的结果与先后次序无关。

C. 方向导数和梯度grad计算公式

方向导数和梯度(grad)是微积分中的两个概念,用来描述函数在给定点处的变化率和方向。下面是它们的计算公式:

1.方向导数:

梯度(grad)是函数在某一点处的变化率最大的方向,是一个向量。具体地,设函数f(x, y, z)在点P(x0, y0, z0)处可导,则函数f在点P的梯度为:

grad(f(P)) = (fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0))

其中,fx, fy, fz分别为f对x, y, z的偏导数。

总之,方向导数和梯度是微积分中两个重要的概念,它们可以帮助我们理解函数在某个点处的变化情况,为实际问题的求解提供了重要的数学工具。

D. 梯度grad计算公式

梯度grad计算公式:在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点P(x,y)∈D,都可以定出一个向量(δf/x)*i+(δf/y)*j,这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作gradf(x,y)。类似的对三元函数也可以定义一个:(δf/x)*i+(δf/y)*j+(δf/z)*k记为grad[f(x,y,z)]。
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

E. 梯度的计算公式是什么

梯度的计算公式:gra=aₓ(∂u/∂x)+aᵧ(∂u/∂y)+az(∂u/∂z)

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

(5)共梯度计算方法扩展阅读:

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅可比矩阵的特殊情况。

在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。

F. 共轭梯度法的算法介绍

又称共轭斜量法,是解线性代数方程组和非线性方程组的一种数值方法,例如对线性代数方程组 Ax=ƒ, (1)式中A为n阶矩阵,x和ƒ为n维列向量,当A对称正定时,可以证明求(1)的解X*和求二次泛函
的极小值问题是等价的。此处(x,у)表示向量x和у的内积。由此,给定了初始向量x(0),按某一方向去求(2)式取极小值的点x(1),就得到下一个迭代值x(2),再由x(2)出发,求x(3)等等,这样来逼近x*。若取求极小值的方向为F在 x(k=1,2,…)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 x(k-1)处的梯度方向r(k-1)和这一步的修正方向p(k-1)所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向p(k),即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为
再逐次计算(k=1,2,…)。可以证明当i≠j时,
从而平p(1),p(2)形成一共轭向量组;r(0),r(1),…形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际山行渗计算中,一般都有舍入误差,所以r(0),r(1),…并不真正互相正交,而尣(0)尣(1),…等也只是逐步逼近(1)的真解,故一般将共轭梯度法逗脊作为迭代法来使用。
近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显着的效果。其方法是选取一对称正定矩阵B并进行三角分解,得B=LLT。将方程组(1)化为 hу=b, (3)
此处y=lTx,b=l-1ƒ,h=l-1Al-T,而
再对(3)用共轭梯度法,计算公式为
k=0,1,2,…)适当选取B,当B很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预带含条件共轭梯度法,它也可用于解代数特征值问题。

G. 计算梯度:解析解和数值解

计算梯度有两种方法:一种是计算方便但是很慢的 数值解(numerical gradient) ,一种是通过公式运算、较快、准确但是可能出错的 解析解(唤燃analytic gradient)

数值解 有限元法、数值逼近、插值法等。数值银绝解只能根据给定的数字求出对应的梯度。

解析解 则是根据公式来计算的,也就是方程求解,对于任意自变量都能得到结果。对于求不出来解析解的方程,就只能算数值解了。

举个栗子🌰
求函数 在[0,5]范围锋链姿内的梯度,解析解求导的答案是 在[0,5]范围内的值,数值解里步长 ,可以对比以下结果。稍微有点差别,0.1作为步长有点大。

在神经网络里计算的应该是解析解,因为每一层基本上都是可微的。

参考:
解析解与数值解
neural network

阅读全文

与共梯度计算方法相关的资料

热点内容
坪效分析方法是指 浏览:225
乒乓球护胶膜贴使用方法视频 浏览:349
考点方法与技巧 浏览:957
猪皮冻的制作方法简单易学 浏览:192
优学派手机上的学习方法 浏览:835
娇韵诗油使用方法 浏览:433
干重活手背肿了快速恢复的方法 浏览:975
鬼谷钱经训练方法 浏览:393
幼儿降温方法有哪些 浏览:520
麦饭石烧干锅了怎么处理方法 浏览:517
应用题一步解决方法 浏览:361
治疗痤疮用什么方法最好 浏览:835
智齿痛什么方法止痛最快 浏览:936
治疗痘痘的适宜方法 浏览:624
七年的汽车折旧计算方法 浏览:711
裤子腰带打结法简单方法 浏览:571
绿松石盘玩方法和图片 浏览:237
蹦极最大速度的计算方法 浏览:115
电机受潮如何处理方法 浏览:180
背东西快最简单的方法 浏览:755