Ⅰ 正负数的运算方式
正数:定义:比0大的实数叫正数
[positive
number]。正数前面常有一个符号“+”,通常可以省略不写。例:2X3=6
负数:负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。例:-2X(-2)=4
正数乘以正数等于正数(aXa=a,a为正数);负数乘以负数等于负数(-aX(-a)=a,a为正数);正数乘以负数等于负数(aX(-a)=-a,a为正数)
Ⅱ 正、负数的加减法到底怎么算啊
负数+负数=负数;例:(-1)+(-2)=-3
负数+正数=①正数②负数;例:(-1)+2=1 ;(-2)+1=-1
负数—负数=①正数②负数;例:(-1)—(-2)=1;(-2)—(-1)=-1
负数—正数=负数;例:(-1)-1=2
负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。
去除负数前的负号等于这个负数的绝对值。
(2)正数和负数的简便计算方法扩展阅读:
负数法则:
负数1×负数2=(负数1×负数2) =正数
负数×正数=-(正数×负数)=负数
负数1÷负数2=(负数1÷负数2) =正数
负数÷正数=-(负数÷正数) =负数
总得来说,就是同号相除等于正数,异号相除等于负数。
“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:
“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:
0-(+3)=-3
0-(-3)=+3