导航:首页 > 计算方法 > 汽车铰链轴摩擦力计算方法

汽车铰链轴摩擦力计算方法

发布时间:2023-03-15 22:18:26

1. 汽车摩擦力怎么

因为,汽车在路上匀速行驶
所以,汽车在水平方向上受平茄型桐衡力的作用
所以,汽车颤坦受到的摩擦力f=F=10000N,其方向与牵引力的方租肆向相反.
答:略.

2. 摩擦力公式是什么

f=μ×Fn。(FN:正压力(不一定等于施力物体的重力)μ:动摩擦因数(是数值,无单位)。

滑动摩擦力的方向总是沿接触面,并且与物体相对运动方向相反。

当物体的压力大小和接触面粗糙程度相同时,滑动摩擦力的大小与接触面面积的大小无关。

摩擦力的大小、方向与物体运动方向及速度大小无关。

(2)汽车铰链轴摩擦力计算方法扩展阅读:

摩擦力与相互摩擦的物体有关,因此物理学中对摩擦力所做出的描述不一般化,也不像对其它的力那么精确。没有摩擦力的话鞋带无法系紧,螺丝钉和钉子无法固定物体。

摩擦力内最大的区分是静摩擦力与其它摩擦力之间的区别。有人认为静摩擦力实际上不应该算作摩擦力。其它的摩擦力都与耗散有关:它使得相互摩擦的物体的相对速度降低,并将机械能转化为热能。

3. 请问摩擦力的计算公式是什么

摩擦力的大小计算公式为f =μN ,式中的μ叫动摩擦因数,N为正压力,摩擦力的方向与物体相对运动的方向或相对运动趋势方向相反。

4. 摩擦力的计算公式是什么

滑动摩擦力的大小计算公式为f =μN ,式中的μ叫动摩擦因数,也叫滑动摩擦系数,它只跟材料、接触面粗糙程度有关,注意跟接触面积无关;N为正压力.


滑动摩擦力:发生在两个相互接触而相对滑动的物体之间,阻碍着它们之间相对滑动的力.


摩擦力的方向与物体相对运动的方向或相对运动趋势方向相反.而不是与物体的运动方向相反.摩擦力可作为动力也可作为阻力.

(4)汽车铰链轴摩擦力计算方法扩展阅读:

摩擦力分为静摩擦力、滚动摩擦、滑动摩擦三种。

一个物体在另一个物体表面发生滑动时,接触面间产生阻碍它们相对运动的摩擦,称为滑动摩擦。滑动摩擦力的大小与接触面的粗糙程度的大小和压力大小有关。压力越大,物体接触面越粗糙,产生的滑动摩擦力就越大。

增大有利摩擦的方法有:增大压力、增大接触面的粗糙程度、压力的大小等。减小有害摩擦的方法有:①减小压力②使物体与接触面光滑③使物体与接触面分离④变滑动为滚动等。

当一个物体在另一个物体表面上滑动时,会受到另一个物体阻碍它滑动的力叫”滑动摩擦力“。

研究滑动摩擦力的大小跟哪些因素有关系的实验:实验时为什么要用弹簧秤拉木块做匀速直线运动?这是因为弹簧秤测出的是拉力大小而不是摩擦力大小。当木块做匀速直线运动时,木块水平方向受到的拉力和木板对木块的摩擦力就是一对平衡力。

根据二力平衡的条件,拉力大小应和摩擦力大小相等。所以测出了拉力大小也就是测出了摩擦力大小。大量实验表明,滑动摩擦力的大小只跟接触面所受的压力大小、接触面的粗糙程度相关。压力越大,滑动摩擦力越大;接触面越粗糙,滑动摩擦力越大。

滑动摩擦力是阻碍相互接触物体间相对运动的力,不一定是阻碍物体运动的力。即摩擦力不一定是阻力,它也可能是使物体运动的动力,要清楚阻碍“相对运动”是以相互接触的物体作为参照物的。“物体运动”可能是以其它物体作参照物的。如:生活中,传送带把货物从低处送到高处,就是靠传送带对货物斜向上的摩擦力实现的。

滑动摩擦力大小与物体运动的快慢无关,与物体间接触面积大小无关 。

研究实际问题时,为了简化往往采用“理想化”的做法,如某物体放在另一物体的光滑的表面上,这“光滑”就意味着两个物体如果发生相对运动时,它们之间没有摩擦。

滑动摩擦力的方向总是沿接触面,并且与物体相对运动方向相反。

公式:F=μ×FN FN:正压力(不一定等于施力物体的重力)μ:动摩擦因数(是数值,无单位)

5. 2020-03-29

1构件:具有确定运动的单元体组成的,这些运动单元体称为构件

零件:组成构件的制造单元体

运动副:两构件直接接触的可动联接

构件的自由度:构件的独立运动数目

运动链:早缺若干个构件通过运动副所构成的系统

机架:固定的构件

原动件:机构中做独立运动的构件

从动件:机构中除原动件外其余的活动构件

运动链→机构:将茄兄运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构

2机构运动简图:表示机构中各构件间相对运动关系的简单图形。机构运动简图必须与原机械具有完全相同的运动特性。

示意图:只为了表明机械的结构,不按比例来绘制简图

3约束和自由度的关系:增加一个约束,构件就失去一个自由度

4机构具有确定运动的条件:机构自由度等于机构的原动件数

5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心

绝对瞬心:运动构件上瞬时绝对速度为零的点

相对瞬心:两运动构件上瞬时绝对速度相等的重合点

6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。

7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。

8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。  自锁条件:η≤0 机械发生自锁

9连杆机构(低副机构):若干个构件通过低副联接所组成的机构

10平面四杆机构基本形式:铰链四杆机构

11曲柄:在两连杆中能做整周回转机构

摇杆:只能在一定角度范围内摆动的构件

周转副:将两构件能做360°相对转动的转动副

摆动副:不能将两构件能做360°相对转动的转动副

12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和  2连架杆和机架中有一杆是最短杆

13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄陆纳辩摇杆机构;最短杆为机架时,该机构为双曲柄机构;

14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构

无急回运动:对心曲柄滑块机构和双摇杆机构

15死点位置:压力角为90°,传动角为0°。曲柄滑块机构,当滑块为原动件时,存在死点位置。

16凸轮机构(高副机构):是由凸轮、从动件、机架及附属装置组成的一种高副机构

17齿轮作用:传递空间任意两轴间的运动和动力

齿轮特点:传动功率大,效率高,传动比精确,使用寿命长,工作安全可靠,要求有较高的制造安装精度,且成本高

18共轭齿廓:两齿轮相互接触传动,并能实现预定传动比规律的一对齿廓。(互相啮合的齿廓均为共轭齿廓)

19齿廓啮合基本定律:任一瞬时相互啮合传动的一对齿轮,其传动比都与两啮合齿廓接触点公法线分两齿轮连心线的两线段长成反比。

20啮合节点:两齿廓接触点处公法线与两轮连心线的交点

21一对渐开线圆柱齿轮的重合度定义:实际啮合线段与齿轮法向齿距之比。

增大重合度对提高齿轮传动的承载能力具有重要意义。

重合度随齿数增大而增大。

22一对渐开线标准直齿圆柱齿轮非标准安装时,节圆与分度圆不重合,分度圆的大小取决于模数齿数,节圆大小取决于中心距。

23渐开线齿廓啮合的定传动比性:两齿轮在任意点K啮合,其公法线nn必为定直线,其与O1O2线交点必为定点,则两轮传动比为常数。

24渐开线齿轮传动间的可分性:渐开线齿轮的传动比又与两轮基圆半径成反比。

第四章 平面机构的力分析

1.基本概念: “静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、 “摩擦角”、“摩擦锥”、 “当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。

2.各种构件的惯性力的确定:

①作平面移动的构件;

②绕通过质心轴转动的构件;

③绕不通过质心的轴转动的构件;

④作平面复合运动的构件。

3.机构的动态静力分析的方法和步骤。

4.总反力方向的确定:

根据两构件之间的相对运动(或相对运动的趋势)方向,正确地确定总反力的作用方向是本章的难点之一。

移动副(斜面摩擦、槽面摩擦):总反力Rxy总是与相对速度vyx 之间呈90°+φ的钝角;

斜面摩擦问题的分析方法是本章的重点之一。

槽面摩擦问题可通过引入当量摩擦系数及当量摩擦角的概念,将其简化为平面摩擦问题。运动副元素的几何形状不同,引入的当量摩擦系数也不同,由此使得运动副元素之间的摩擦力不同。

转动副:总反力Rxy总是与摩擦圆相切。它对铰链中心所形成的摩擦力矩Mfxy=Rxy·ρ。方向与相对角速度ωyx的方向相反。Rxy的确切方向需从该构件的力平衡条件中得到。

平面机构自由度的计算

F=3n-(2pl+ph)

n为机构中活动构件数目;pl为低副数;ph为高副数

*空间机构自由度计算

F=6n-(5p5+ap4+3p3+2p2+p1)

n为机构中活动构件数目;p1为Ⅰ级副;p2为Ⅱ级副;p3为Ⅲ级副;p4为Ⅳ级副;p5为Ⅴ级副。

计算平面机构自由度时注意事项:

1、要正确计算运动副的数目

(1) 由m个构件组成的复合铰链,有(m-1)个转动副。

(2) 如果两构件多处接触构成转动副,且转动轴线重合;或者在多处接触而构成移动副,且移动方向彼此平行;或者两构件构成平面高副,且各接触点公法线彼此重合,则都只能算作一个运动副(一个转动副,一个移动副,一个平面高副)

(3) 如果两构件在多处相接触构成平面高副,而在各接触点处的公法线方向彼此不重合,就构成了复合高副,它相当于一个低副。

2、要除去局部自由度

在有些机构中,某些构件所产生的局部运动并不影响其他构件的运动,则称这种局部运动的自由度为局部自由度。

3、要除去虚约束

在机构中,有些运动副带入的约束对机构的运动只起重复约束作用,特把这类约束称为虚约束。

——带入虚约束发生在下列情况:

1) 机构中,如果用转动副连接的是两构件上运动轨迹相重合的点,则该连接将带入1个虚约束。

2) 机构中,如果用双转动副杆连接的梁运动构件上某两点之间的距离适中保持不变得两点,也将带入1个虚约束。

3) 机构中,不影响机构运动传递的重复部分所带入的约束为虚约束。 

如:设机构重复部分的构件数为n,低副数为p1,高副数为ph,则重复部分带入的虚约束p为

p=2p1+ph-3n

机构组成原理:任何机构都可以看作由若干个基本杆组一次连接于原动件和机架上而构成的。

基本杆组(阿苏尔杆组,简称杆组):不能再拆的最简单的自由度为零的构件组。

※在杆组并接时,不能将同一杆组的各个外接运动副接于同一构件上,否则将起不到增加杆组的作用。

组成平面结构的基本杆组条件:

3n-2pl-ph=0

n为基本杆组中的构件数,pl为低副数,ph为高副数。

平面基本杆组中全为低副,则ph=0;

3n-2pl=0或n/2=pl/3

Ⅱ级杆组:由2个构件和3个低副构成的。

Ⅲ级杆组:由4个构件和6个低副且都有一个包含3个低副的构件构成的。

Ⅰ级机构:只由机架和原动件构成的机构(如:杠杆机构、斜面机构)

Ⅱ级机构:由最高级别为Ⅱ级组的基本杆组构成的机构。

Ⅲ级机构:由最高级别为Ⅲ级组的基本杆组组成的机构。

同一机构因所取的原动件不同,有可能成为不同级别的机构;

当机构的原动件确定后,杆组的拆法和机构的级别即为一定。

*高副低代:将机构中的高副根据一定的条件虚拟地以低副加以取代。

进行高副低代必须满足的条件:

(1) 代替前后机构的自由度完全相同;

(2) 代替前后机构的瞬时速度和瞬时加速度完全相同

阅读全文

与汽车铰链轴摩擦力计算方法相关的资料

热点内容
艾滋检测方法及原理 浏览:218
竹椅子使用方法视频 浏览:63
照片去水印的方法手机上 浏览:791
男性腺素高的治疗方法 浏览:600
8x45x2用简便方法算 浏览:958
研究产后盆底肌康复的方法 浏览:803
人飞起来最简单的方法 浏览:6
缓存会在哪里设置方法 浏览:787
快速收肘的方法 浏览:578
手机屏幕保护时间在哪里设置方法 浏览:919
鉴定别人的手机的方法 浏览:620
直播发题的技巧和方法 浏览:273
感冒身体发热怎么办简单的方法 浏览:199
紫砂水洗使用方法 浏览:416
小孩支气管治疗方法 浏览:685
杏种子的种植方法 浏览:930
凉席如何除螨最有效方法 浏览:476
研究心理学的方法内容及优缺点 浏览:505
家用鱼缸水泵安装方法 浏览:715
物理降温头枕冰袋正确方法图片 浏览:528