① 数学简便计算,有哪几种方法
简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。
它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。
就像68+77=?
大多数人不一定立刻能算出结果,
如果换成70+75=?
相信每一个人都可以一口算出和是145。
这里其实就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇见复杂的计算式时,
先观察有没有可能凑整,
凑成整十整百之后再进行计算,
不仅简便,而且避免计算出错。
①加减凑整
【例题1】999+99+29+9+4=?
题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例题2】5999+499+299+19=?
看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。
没有枪没有炮,自己去创造!
先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分组凑整
在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。
【例题3】100-95+92-89+86-83+80-77=?
题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。
根据加法减法运算性质,我们给相邻的项加上括号。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。
③提取公因数法
这就需要用到乘法分配律提取公因数,
又称为提取公因数法。
如果没有公因数,我们可以采取乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例题4】47.9x6.6+529x0.34=?
很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。
② 如何进行简便运算
简便运算,就是利用运算定律或者是运算性质,巧用特殊数之间的特性进行巧算
乘法分配律为:两个数的和与一个数相乘,先将它们与这个数分别相乘,再相加,积不变.即:(a+b)×c=a×c+b×c.反过来则:a×c+b×c=(a+b)×c
简便计算常用方法:
1、利用运算定律。利用加法的交换律和结合律,乘法的交换律、结合律和分配律,可以使计算简便。
2、分解因数。有的特殊数相乘是可以得到整数的,比如25和4,125和8等等,在我们遇到这些数字时,可以想办法把它们变成能得到整数的数字。
3、数字变形。有的列式中的数字不能用简便方式,但是我们把一些数字变形后就可以采用简便方式,这时我们就要给数字变形了。
4、等差数列。有些算式的相邻数字的差是相同的,这时我们可以采用等差数列公式算式。
5、设数法。有些算式中,有的数字是相同的,但是式子又比较长,这时我们可以把相同的数字组成的算式设为一个字母,然后把式子中相应的换成字母,再计算,就简便多了。
6、凑整法。有些小数与整数相差很少,又有规律,这是我们可以凑成整数计算。
7、拆分法。拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
③ 简便计算方法
常用的简便算法有以下几种
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5
计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道题目中,利用第一种方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等于5100加上2200等于6300
④ 五年级简便计算有哪些
五年级的简便计算有:凑整法、交置法、去括号法、运用运算定律、减法性质。注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
小学数学简便运算归类练习
一般情况下,四则运算的计算顺序是:有括号时,先算括号里面的;没有括号时,先算二级运算,再算- -级运算,只有同一级运算时,从左往右依次计算。
一、简便运算一般有5种方法:
1.凑整法:通过加、减一个数将其凑成整十、整百、整千的数。
2.交置法:也就是通常所说的结合律,几个数相加、相减,将其位置交换一下,凑成整十、整百、整千的数。
3.去括号法:有时在计算含有括号的算式时,通过去除括号,可使运算简便,但要注意的是去括号后的符号变化。
4、运用运算定律。
加法交换律: a+b=b+a;
加法结合律::a+b+c=a+ (b+c);
乘法交换律:aXb=bXa;
乘法结合律:aXbXc=aX (bXc);
乘法分配律:(a+b) Xc=aXc+bXc。
5、 减法性质:a-b-c=a-c-b=a- (b+c);
除法性质:a+b十c=a+c十b=a+ (bXc)。
运算简便,但要注意的是去括号后的符号变化。
⑤ 四年级简便运算的技巧和方法是什么
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以“带符号搬家”。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括号法
在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
方法三:乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配;提取公因式:注意相同因数的提取;注意构造,让算式满足乘法分配律的条件。
方法四:拆分法
拆分法属于为了方便计算把一个数拆成几个数,这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小。
方法五:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
⑥ 简便运算的技巧和方法有哪些
数学简便计算方法:
一、裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。
(3)分母上几个因数间的差是一个定值。
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。
例题
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256,可使计算简便。
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
⑦ 所有简便计算的公式和方法
1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
⑧ 简便计算有哪几种
1、乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。如将上式中的+变为x,运用乘法结合律也可简便计算
2、乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。
它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
3、乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a。
4、加法交换律
加法交换律用于调换各个数的位置:a+b=b+a。
5、加法结合律
(a+b)+c=a+(b+c)。
简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。
(8)130个简便计算方法扩展阅读:
性质
减法1
a-b-c=a-(b+c)
减法2
a-b-c=a-c-b
除法1
a÷b÷c=a÷(b×c)
除法2
a÷b÷c=a÷c÷b
注意事项:
在进行简便运算(四则运算)时,应注意运算符号(乘除和加减)和大、中、小括号之间的关连。不要越级运算,以免发生运算错误。
⑨ 简便运算的计算方法
简便运算计算方法例子分析69+32+11+18
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
69+32+11+18
=69+11+(18+32)
=80+50
=130
(9)130个简便计算方法扩展阅读#计算结果:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:0+0=0
步骤二:8+5=3 向高位进1
根据以上计算步骤组合计算结果为130
存疑请追问,满意请采纳
⑩ 简便计算方法
简便计算的方法一般有:
【加法简便计算】
加法交换律,加法结合律,
【乘法简便计算】
乘法交换律,乘法结合律,乘法分配律,